4.5 Article

Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect

Journal

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
Volume 322, Issue 21, Pages 3508-3513

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmmm.2010.06.054

Keywords

Heat transfercoefficient; Ferrofluid Magnetic field

Ask authors/readers for more resources

This paper reports an experimental work on the convective heat transfer of ferrofluid flowing through a heated copper tube in the laminar regime in the presence of magnetic field. Significant enhancement on the heat transfer of ferrofluid by applying various orders of magnetic field is observed in this experiment. Also in this experiment, the effect of magnetic nanoparticles concentrations and magnet position have been investigated. The main reason for the enhancement of heat transfer coefficient could be caused due to remarkable changes in thermophysical properties of ferrofluid under the influence of applied magnetic field. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Multidisciplinary

Improved optical properties of YVO4:Eu3+ nano-layers on silica spheres

Seyed Mahdi Rafiaei, Taghi Dallali Isfahani, Hamed Afshari, Mohammadreza Shokouhimehr

MATERIALS CHEMISTRY AND PHYSICS (2018)

Article Metallurgy & Metallurgical Engineering

A facile method for fabrication of nano-structured Ni-Al2O3 graded coatings: Structural characterization

Arash Yazdani, Taghi Isfahani

TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA (2018)

Article Materials Science, Ceramics

Nanocrystalline growth activation energy of alumina polymorphs synthesised by mechanochemical technique

T. D. Isfahani, J. Javadpour, A. Khavandi, H. R. Rezaie, M. Goodarzi

ADVANCES IN APPLIED CERAMICS (2013)

Article Thermodynamics

The thermal conductivity of water base ferrofluids under magnetic field

Anwar Gavili, Fatemeh Zabihi, Taghi Dallali Isfahani, Jamshid Sabbaghzadeh

EXPERIMENTAL THERMAL AND FLUID SCIENCE (2012)

Article Thermodynamics

The effect of real viscosity on the heat transfer of water based Al2O3 nanofluids in a two-sided lid-driven differentially heated rectangular cavity

Anwar Gavili, Taghi Dallali Isfahani, Fatemeh Zabihi, Iraj Hadi

HEAT AND MASS TRANSFER (2013)

Article Computer Science, Interdisciplinary Applications

The variation of heat transfer in a two-sided lid-driven differentially heated square cavity with nanofluids containing carbon nanotubes for physical properties of fluid dependent on temperature

Anwar Gavili, Taghi Dallali Isfahani, Jamshid Sabbaghzadeh

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS (2012)

Article Materials Science, Multidisciplinary

Mechanochemical synthesis of zirconia nanoparticles: Formation mechanism and phase transformation

Taghi Dallali Isfahani, Jafar Javadpour, Alireza Khavandi, Robert Dinnebier, Harnid Reza Rezaie, Massoud Goodarzi

INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS (2012)

Article Materials Science, Multidisciplinary

Nanocrystalline Growth Activation Energy of Zirconia Polymorphs Synthesized by Mechanochemical Technique

Taghi Dallali Isfahani, Jafar Javadpour, Alireza Khavandi, Massoud Goodarzi, Hamid Reza Rezaie

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2014)

Article Engineering, Chemical

Mechanochemical synthesis of alumina nanoparticles: Formation mechanism and phase transformation

Taghi Dallali Isfahani, Jafar Javadpour, Alireza Khavandi, Robert Dinnebier, Massoud Goodarzi, Hamid Reza Rezaie

POWDER TECHNOLOGY (2012)

Article Materials Science, Composites

Formation mechanism and phase transformations in mechanochemically prepared Al2O3-40wt% ZrO2 nanocomposite powder

Taghi Isfahani, Jafar Javadpour, Alireza Khavandi

COMPOSITE INTERFACES (2019)

Article Materials Science, Multidisciplinary

Effect of Al-B4C nanocomposite filler manufactured by accumulative roll bonding (ARB) method on the microstructure and mechanical properties of weldings prepared by tungsten inert gas welding

Mohammad Sadegh Bayati, Hassan Sharifi, Morteza Tayebi, Taghi Isfahani

MATERIALS RESEARCH EXPRESS (2019)

Article Metallurgy & Metallurgical Engineering

Modified Mechanical Coating Technique for the Preparation of Nanohydroxyapatite Coated Ti-6Al-4V Dental Implants

Hossein Ahmadzadeh, Taghi Isfahani, Anoosheh Zargar Kharazi

PROTECTION OF METALS AND PHYSICAL CHEMISTRY OF SURFACES (2020)

Article Materials Science, Multidisciplinary

Effect of Solution Treatment on the Rollability of a Cu-Ni-Mn-Sn Alloy

Morteza Hadi, Omid Bayat, Hadi Karimi, Mohsen Sadeghi, Taghi Isfahani

Summary: This research investigates the effect of initial microstructure and solution treatment on the rollability and crystallographic texture of a Cu-Mn-Ni-Sn alloy. The results show that proper solution treatment can eliminate phase segregation and dissolve alloying elements, leading to a change in texture and an increase in total reduction during the rolling process.

IRANIAN JOURNAL OF MATERIALS SCIENCE AND ENGINEERING (2022)

Article Materials Science, Multidisciplinary

Remote detection of bovine serum albumin (BSA) using cantilever beam magnetometer

Bibhutibhusan Nayak, S. Narayana Jammalamadaka

Summary: This article presents a method for remote detection of bovine serum albumin (BSA) using modified cantilever beam magnetometry (CBM). By combining a magnetostrictive Fe70Ga30 cantilever with optical detection technique, researchers were able to detect high concentrations of BSA remotely. The results of this study demonstrate the potential of this method in estimating the magnetostriction of thin films.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Influence of magnetic external field and particle size on the formation of a single domain state

Yu Hao, R. E. Camley, Z. Celinski

Summary: Magnetic particles have various applications and their magnetic state is determined by their size and the strength of an applied magnetic field. Numerical simulations were performed to study the effect of an applied field on the critical size of single-domain magnetic particles, and the critical field at which a particle becomes single-domain was determined.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Smart nanocomposite SrFe12O19/α or γ - Fe2O3 thin films with adaptive magnetic properties

Nitesh Singh, Naresh Kumar, Dharohar Sahadot, Anil Annadi, Vidyadhar Singh, Murtaza Bohra

Summary: The unique magnetic properties of FM/AFM and hard-FM/soft-FM nanocomposite thin films have significant relevance for numerous applications. The composition and performance of different magnetic phases in the nanocomposite films can be significantly affected by the laser ablation conditions and annealing temperature.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

A symmetric T-H shape wideband negative index metamaterial for 28-GHz millimeter-wave applications

Alya Ali Musaed, Samir Salem Al-Bawri, Khaled Aljaloud, Wazie M. Abdulkawi, Mohammad Tariqul Islam, Mandeep Jit Singh, Zaini Sakawi, Husam Hamid Ibrahim

Summary: This research presents a wideband tunable metamaterial for body-centric applications in the millimeter-wave frequency band. The proposed metamaterial has a wide operating frequency range and enhanced gain, making it suitable for improving the antenna performance in 5G wireless communication systems.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Structure and properties of NdCuGa3 single crystals

Binod K. Rai, Boris Maiorov, Krzysztof Gofryk, Patrick O'Rourke, Catherine Housley, Henry Ajo, Asraf Sawon, Arjun K. Pathak, Narayan Poudel, Qiang Zhang, Travis J. Williams, Matthias Frontzek

Summary: This manuscript reports on the structural and magnetic properties of NdCuGa3. The study confirmed the crystal structure and magnetic phase transition of NdCuGa3 using XRD, neutron diffraction, magnetization, and specific heat measurements. The neutron diffraction data further confirmed the antiferromagnetic phase of NdCuGa3.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

A multiferroic coupling mechanism in the polar interface region of GaN-ZnO heterojunction: A first-principle study

Haonan Li, Cong Li, Hailiang Huang, Guodong Hao, Fei Wang

Summary: The electronic structure and ferroelectric-ferromagnetic coupling properties of Y-doped and vacancy-containing GaN-ZnO heterojunctions are systematically investigated. The magnetism in vacancy-containing systems is generated by the spin polarization of unpaired electrons induced by cationic vacancies, while in Y-doped systems, bound magnetic polarons are formed by the orbital hybridization of s-state and d-state electrons of Y-doped elements.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Co-precipitation method followed by ultrafast sonochemical synthesis of aluminium doped M type BaFe11.4-xAlxCo0.6O19 hexaferrites for various applications

Muhammad Ijaz, Hafeez Ullah, Bandar Ali Al-Asbahi, Mati Ullah Khan, Zaheer Abbas, Sana Ullah Asif

Summary: M-type BaFe11.4-xAlxCo0.6O19 hexaferrites with Al3+ substitutions were synthesized using the co-precipitation method followed by Sonochemical process. The synthesized materials were characterized using XRD, FTIR, UV-vis spectroscopy, VSM, SEM, and LCR meter. The results showed that aluminum doping decreased the band gap and enhanced the magnetic and dielectric properties of the hexaferrites, making them suitable for various applications.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Magnons in the fan phase of anisotropic frustrated antiferromagnets

Oleg I. Utesov

Summary: The elementary excitations spectrum of anisotropic frustrated antiferromagnets in the fan phase is discussed. It is found that the low-energy part of the spectrum consists of a gapless phason branch with linear dispersion and a gapped optical branch corresponding to the fan structure amplitude oscillations. In the high-energy part of the spectrum, the excitations are similar to the magnons of the fully polarized phase.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Vapor bubbles departure frequency at ferrofluid boiling on a single nucleation site in a uniform horizontal magnetic field

Alexander Ya. Simonovskii, Alexander A. Yanovskii, Arthur R. Zakinyan

Summary: In this study, the departure frequency of vapor bubbles during boiling of ferrofluid in a horizontal magnetic field is experimentally investigated. Two methods, visual and inductive, are used to measure the frequency of bubble departure. The results show that the bubble departure frequency can decrease with increasing magnetic field strength and increase with increasing temperature of the heat-emitting surface. A linear stability analysis is conducted to analyze the influence of the magnetic field on the frequency of bubble formation during ferrofluid boiling.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Magnetic and transformation properties of Ni2MnGa combinatorically substituted with 5 at.% of transition elements from Cr to Cu - Experimental insight

Oleg Heczko, Michal Rames, Vit Kopecky, Petr Vertat, Michal Varga, Ladislav Straka

Summary: Heusler Ni-Mn-Ga alloys are multiferroic materials that exhibit magnetic shape memory (MSM) phenomena. By doping transition elements into Ni2MnGa alloys, the transformation temperatures can be modified and complex behaviors can be observed, such as the variation in saturation magnetization and the effects of elemental substitution on compound properties.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

DFT calculations for electronic and magnetic properties of full Heusler Fe2MnAs alloy in perfect and defect structures

Carlos Ariel Samudio Perez, Ariel Flaig de Marchi

Summary: This study investigates the electronic and magnetic properties of the Full-Heusler Fe2MnAs alloy using first-principles calculations. The alloy may form spontaneously and exhibits a ferromagnetic order and high spin-polarization. It can be transformed into a half-metal by contracting the lattice constant. Additionally, certain defects contribute to the spin-polarization of the alloy, making it a fully half-metallic material.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Enhancing electromagnetic properties through carbon Nanotube-Based polymer composites

Satish Geeri, Aditya Kolakoti, Prasadarao Bobbili

Summary: In this study, an electromagnetic wave-absorbing material was fabricated using a polymer composite material with fiber orientation and Multiwall Carbon Nanotubes as filler materials, along with a Perfect Electric Conducting material. The experiments demonstrated strong electromagnetic absorbing properties for the composites with PEC-coated and non-PEC-coated materials. Mechanical, thermal, and morphological analysis confirmed the similar trend in properties. CRITIC analysis helped identify the sequence order of sustaining properties for the fabricated composites.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

First-principles prediction of intrinsic piezoelectricity, spin-valley splitting and magneto-crystal anisotropy in 2H-VS2 magnetic semiconductor

Yankai Chen, Ruoxue Zhang, Yukai An

Summary: The piezoelectricity, valley character, and magnetic properties of 2H-VS2 monolayer were studied, revealing its potential applications in spintronics and valleytronics due to its bipolar magnetic semiconductor characteristics and superior physical properties.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Thermodynamic, entanglement and spin Hall conductivity on kagome-honeycomb lattice system

Leonardo S. Lima

Summary: This study investigates the thermodynamic quantities, such as entropy, specific heat, and magnetic susceptibility, in the next-nearest-neighbors Heisenberg model on a honeycomb-kagome lattice. The linear spin-wave approach is applied to obtain the temperature-dependent behavior of these quantities. Additionally, the entanglement negativity, a quantifier of quantum entanglement, and the spin Hall conductivity are also studied. The results show that all the thermodynamic quantities, as well as the entanglement negativity and spin Hall conductivity, exhibit an increasing trend with temperature. Furthermore, it is found that all the analyzed quantities approach zero in the low-temperature limit, consistent with experimental observations.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Large conventional and inverse magnetocaloric effects in RE2Ga2Mg (RE = Tm, Er, Ho) compounds

Zhaoxing Wang, Maximilian Kai Reimann, Wang Chen, Yikun Zhang, Rainer Poettgen

Summary: The Mo2FeB2-type compounds RE2Ga2Mg (RE = Tm, Er, Ho) exhibit a large magnetocaloric effect, making them promising for cryogenic magnetic cooling applications.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)