4.5 Article

Preparation and magnetic properties of La-Mn and La-Co doped barium hexaferrites prepared via an improved co-precipitation/molten salt method

Journal

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
Volume 322, Issue 21, Pages 3342-3345

Publisher

ELSEVIER
DOI: 10.1016/j.jmmm.2010.06.022

Keywords

Co-precipitation/molten salt method; Barium ferrite; Doping; Saturation magnetization; Coercivity

Funding

  1. Education Ministry of Liaoning Province [L2010518]
  2. Shenyang Normal University

Ask authors/readers for more resources

LaMn and LaCo doped barium hexaferrites of formula Ba(1-x)LaxFe(12-x)MxO19 (M=Mn, Co) (x=0.05 to 0.40) were prepared with an improved co-precipitation/molten salt method. For the synthesis, aqueous solutions of the appropriate metal chlorides were prepared in the ratio required except that the initial mole ratio of Fe and dopants to Ba was chosen to be 11:1, and then mixed with excess Na2CO3. The solutions were then cooled, filtered off, dried, then mixed with KCl flux, and heated at 450 degrees C and for 2 h. The temperature was then raised to 950 degrees C and kept for 4 h, then cooled. This new synthesis method, which employs a lower temperature and shorter reaction time, gives products with improved crystallinity and purity while the saturation magnetization and coercivity values are comparable with those synthesized via the high temperature method. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Thermodynamics

Natural Mathematical Derivation of the Gibbs-Duhem Equation Related to ΔG and partial differential partial derivativeG/partial differential partial derivativeξ

Ying Liu, Yue Liu, Michael G. B. Drew

Summary: The study of the Gibbs-Duhem equation and its applications is one of the most difficult topics in thermodynamics. This paper presents a novel mathematical derivation that is shown to be more natural, direct, and intuitive than the traditional thermodynamic derivation. By introducing Legendre transformations, multiple perspectives for problem-solving are provided.

INTERNATIONAL JOURNAL OF THERMOPHYSICS (2022)

Article Materials Science, Multidisciplinary

A Re-evaluation of the mechanism of microwave absorption in film-Part 2: The real mechanism

Ying Liu, Yue Liu, Michael G. B. Drew

Summary: For many years, it has been common practice to use reflection loss defined for devices to characterize materials, which has caused many problems. By replacing the flawed theory of impedance matching with wave superposition theory and using simple geometry to represent film absorption, the real mechanism of film absorption has been revealed. It is shown that film and material are different, and absorption efficiency is influenced by factors such as wave superposition and energy conservation.

MATERIALS CHEMISTRY AND PHYSICS (2022)

Article Materials Science, Multidisciplinary

A re-evaluation of the mechanism of microwave absorption in film-Part 3: Inverse relationship

Ying Liu, Yue Liu, Michael G. B. Drew

Summary: This section discusses the application of impedance matching and quarter-wavelength theories in microwave absorption research, pointing out their flaws and proposing a new theory to replace the quarter-wavelength theory.

MATERIALS CHEMISTRY AND PHYSICS (2022)

Article Materials Science, Multidisciplinary

A Re-evaluation of the mechanism of microwave absorption in film-Part 1: Energy conservation

Ying Liu, Yue Liu, Michael G. B. Drew

Summary: Energy conservation is crucial for understanding the mechanism of microwave absorption by films. In the past, confusion between films and materials has caused many issues. By considering energy conservation, the differences between films and materials are clarified, and some difficult issues have been explained.

MATERIALS CHEMISTRY AND PHYSICS (2022)

Article Chemistry, Multidisciplinary

Photocatalytic degradation of tetracycline hydrochloride with g-C3N4/Ag/AgBr composites

Jiahe Song, Kun Zhao, Xiangbin Yin, Ying Liu, Iltaf Khan, Shu-Yuan Liu

Summary: A Z-scheme g-C3N4/Ag/AgBr heterojunction photocatalyst was prepared via in-situ loading through photoreduction method. The g-C3N4/Ag/AgBr composite showed excellent photocatalytic performance in the degradation of tetracycline hydrochloride pollutants. The main active oxygen species involved in the degradation of organic pollutants were O2^- and (OH)·.

FRONTIERS IN CHEMISTRY (2022)

Article Physics, Applied

A physics investigation on impedance matching theory in microwave absorption film. II. Problem analyses

Ying Liu, Michael G. B. Drew, Yue Liu

Summary: In the previous Part I, it was demonstrated using transmission-line theory that impedance matching theory should be replaced by wave cancellation theory. It was also shown that film is different from the material and phase effects from interfaces should be considered in quarter wavelength theory. In this Part, it is proven that energy penetration in a film cannot be defined and impedance matching is flawed as it lacks theoretical proof and consistency with experimental data. The multiple absorption peaks in a film arise from wave cancellation under the constraint of energy conservation, rather than resonances from the material.

JOURNAL OF APPLIED PHYSICS (2023)

Article Physics, Applied

A physics investigation on impedance matching theory in microwave absorption film-Part I. Theory

Ying Liu, Michael G. B. Drew, Yue Liu

Summary: This study theoretically confirms that the absorption mechanism in a film, responsible for the minima of the reflection loss (RL/dB), is best explained by wave cancelation theory rather than by impedance matching theory. The study also reveals that the mechanisms for a film and material are different. In addition, the flaws of neglecting the phase effects of interfaces in a film in quarter-wavelength theory are quantitatively discussed.

JOURNAL OF APPLIED PHYSICS (2023)

Article Physics, Condensed Matter

Microwave absorption of film explained accurately by wave cancellation theory

Ying Liu, Xiangbin Yin, Michael G. B. Drew, Yue Liu

Summary: By analyzing experimental data, this study provides new theoretical perspectives on the inadequacies of impedance matching theory in the field of microwave absorption. It suggests that the current theories related to impedance matching need to be replaced by wave cancellation theory, as even different criteria cannot solve the problems with impedance matching. The analysis in this work supports the new theories against the current ones by applying to published data and determining the conditions for the minima of reflection loss at large values of |Zin - Z0| through transmission-line theory.

PHYSICA B-CONDENSED MATTER (2023)

Article Chemistry, Physical

Unexpected results in microwave absorption-part 1: different absorption mechanisms for metal-backed film and for material

Ying Liu, Yi Ding, Yue Liu, Michael G. B. Drew

Summary: It is commonly believed that two synergistic effects maximize microwave absorption power of a film - increasing the absorption power of the material and the penetration of incident microwaves into the film. However, this reasoning is incorrect as it confuses material with film and is not consistent with the real absorption mechanism. By differentiating film from material, it is shown that reflection loss (RL) is relevant only for film and the real mechanism involves balancing the intensities of the two beams reflected from the film's interfaces when they are out of phase by π. It is commonly believed incorrectly that maximum absorption from film occurs when the resultant beam reflected back to open space from the metal-back interface is weakest. But it is shown here that the opposite is true - maximum absorption occurs when this reflected beam reaches its maximum. A definition for film in the context of microwave absorption is proposed.

SURFACES AND INTERFACES (2023)

Article Chemistry, Physical

Unexpected results in microwave absorption-Part 2: Angular effects and the wave cancellation theory

Ying Liu, Yi Ding, Yue Liu, Michael G. B. Drew

Summary: Part 1 of this work demonstrates that film absorption is based on wave cancellation theory (WCT) rather than the mechanism of material attenuation power and impedance matching theory (IM). The film thickness and material properties affect the pattern of the reflection loss curve and the occurrence of multiple absorption peaks. Maximum absorption occurs when the two reflected beams are out of phase by & pi; at the front of the film, regardless of whether the film has a metal back or not. WCT explains the deviations of maximum absorption positions from the predicted values of IM.

SURFACES AND INTERFACES (2023)

Article Materials Science, Multidisciplinary

Remote detection of bovine serum albumin (BSA) using cantilever beam magnetometer

Bibhutibhusan Nayak, S. Narayana Jammalamadaka

Summary: This article presents a method for remote detection of bovine serum albumin (BSA) using modified cantilever beam magnetometry (CBM). By combining a magnetostrictive Fe70Ga30 cantilever with optical detection technique, researchers were able to detect high concentrations of BSA remotely. The results of this study demonstrate the potential of this method in estimating the magnetostriction of thin films.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Influence of magnetic external field and particle size on the formation of a single domain state

Yu Hao, R. E. Camley, Z. Celinski

Summary: Magnetic particles have various applications and their magnetic state is determined by their size and the strength of an applied magnetic field. Numerical simulations were performed to study the effect of an applied field on the critical size of single-domain magnetic particles, and the critical field at which a particle becomes single-domain was determined.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Smart nanocomposite SrFe12O19/α or γ - Fe2O3 thin films with adaptive magnetic properties

Nitesh Singh, Naresh Kumar, Dharohar Sahadot, Anil Annadi, Vidyadhar Singh, Murtaza Bohra

Summary: The unique magnetic properties of FM/AFM and hard-FM/soft-FM nanocomposite thin films have significant relevance for numerous applications. The composition and performance of different magnetic phases in the nanocomposite films can be significantly affected by the laser ablation conditions and annealing temperature.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

A symmetric T-H shape wideband negative index metamaterial for 28-GHz millimeter-wave applications

Alya Ali Musaed, Samir Salem Al-Bawri, Khaled Aljaloud, Wazie M. Abdulkawi, Mohammad Tariqul Islam, Mandeep Jit Singh, Zaini Sakawi, Husam Hamid Ibrahim

Summary: This research presents a wideband tunable metamaterial for body-centric applications in the millimeter-wave frequency band. The proposed metamaterial has a wide operating frequency range and enhanced gain, making it suitable for improving the antenna performance in 5G wireless communication systems.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Structure and properties of NdCuGa3 single crystals

Binod K. Rai, Boris Maiorov, Krzysztof Gofryk, Patrick O'Rourke, Catherine Housley, Henry Ajo, Asraf Sawon, Arjun K. Pathak, Narayan Poudel, Qiang Zhang, Travis J. Williams, Matthias Frontzek

Summary: This manuscript reports on the structural and magnetic properties of NdCuGa3. The study confirmed the crystal structure and magnetic phase transition of NdCuGa3 using XRD, neutron diffraction, magnetization, and specific heat measurements. The neutron diffraction data further confirmed the antiferromagnetic phase of NdCuGa3.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

A multiferroic coupling mechanism in the polar interface region of GaN-ZnO heterojunction: A first-principle study

Haonan Li, Cong Li, Hailiang Huang, Guodong Hao, Fei Wang

Summary: The electronic structure and ferroelectric-ferromagnetic coupling properties of Y-doped and vacancy-containing GaN-ZnO heterojunctions are systematically investigated. The magnetism in vacancy-containing systems is generated by the spin polarization of unpaired electrons induced by cationic vacancies, while in Y-doped systems, bound magnetic polarons are formed by the orbital hybridization of s-state and d-state electrons of Y-doped elements.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Co-precipitation method followed by ultrafast sonochemical synthesis of aluminium doped M type BaFe11.4-xAlxCo0.6O19 hexaferrites for various applications

Muhammad Ijaz, Hafeez Ullah, Bandar Ali Al-Asbahi, Mati Ullah Khan, Zaheer Abbas, Sana Ullah Asif

Summary: M-type BaFe11.4-xAlxCo0.6O19 hexaferrites with Al3+ substitutions were synthesized using the co-precipitation method followed by Sonochemical process. The synthesized materials were characterized using XRD, FTIR, UV-vis spectroscopy, VSM, SEM, and LCR meter. The results showed that aluminum doping decreased the band gap and enhanced the magnetic and dielectric properties of the hexaferrites, making them suitable for various applications.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Magnons in the fan phase of anisotropic frustrated antiferromagnets

Oleg I. Utesov

Summary: The elementary excitations spectrum of anisotropic frustrated antiferromagnets in the fan phase is discussed. It is found that the low-energy part of the spectrum consists of a gapless phason branch with linear dispersion and a gapped optical branch corresponding to the fan structure amplitude oscillations. In the high-energy part of the spectrum, the excitations are similar to the magnons of the fully polarized phase.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Vapor bubbles departure frequency at ferrofluid boiling on a single nucleation site in a uniform horizontal magnetic field

Alexander Ya. Simonovskii, Alexander A. Yanovskii, Arthur R. Zakinyan

Summary: In this study, the departure frequency of vapor bubbles during boiling of ferrofluid in a horizontal magnetic field is experimentally investigated. Two methods, visual and inductive, are used to measure the frequency of bubble departure. The results show that the bubble departure frequency can decrease with increasing magnetic field strength and increase with increasing temperature of the heat-emitting surface. A linear stability analysis is conducted to analyze the influence of the magnetic field on the frequency of bubble formation during ferrofluid boiling.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Magnetic and transformation properties of Ni2MnGa combinatorically substituted with 5 at.% of transition elements from Cr to Cu - Experimental insight

Oleg Heczko, Michal Rames, Vit Kopecky, Petr Vertat, Michal Varga, Ladislav Straka

Summary: Heusler Ni-Mn-Ga alloys are multiferroic materials that exhibit magnetic shape memory (MSM) phenomena. By doping transition elements into Ni2MnGa alloys, the transformation temperatures can be modified and complex behaviors can be observed, such as the variation in saturation magnetization and the effects of elemental substitution on compound properties.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

DFT calculations for electronic and magnetic properties of full Heusler Fe2MnAs alloy in perfect and defect structures

Carlos Ariel Samudio Perez, Ariel Flaig de Marchi

Summary: This study investigates the electronic and magnetic properties of the Full-Heusler Fe2MnAs alloy using first-principles calculations. The alloy may form spontaneously and exhibits a ferromagnetic order and high spin-polarization. It can be transformed into a half-metal by contracting the lattice constant. Additionally, certain defects contribute to the spin-polarization of the alloy, making it a fully half-metallic material.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Enhancing electromagnetic properties through carbon Nanotube-Based polymer composites

Satish Geeri, Aditya Kolakoti, Prasadarao Bobbili

Summary: In this study, an electromagnetic wave-absorbing material was fabricated using a polymer composite material with fiber orientation and Multiwall Carbon Nanotubes as filler materials, along with a Perfect Electric Conducting material. The experiments demonstrated strong electromagnetic absorbing properties for the composites with PEC-coated and non-PEC-coated materials. Mechanical, thermal, and morphological analysis confirmed the similar trend in properties. CRITIC analysis helped identify the sequence order of sustaining properties for the fabricated composites.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

First-principles prediction of intrinsic piezoelectricity, spin-valley splitting and magneto-crystal anisotropy in 2H-VS2 magnetic semiconductor

Yankai Chen, Ruoxue Zhang, Yukai An

Summary: The piezoelectricity, valley character, and magnetic properties of 2H-VS2 monolayer were studied, revealing its potential applications in spintronics and valleytronics due to its bipolar magnetic semiconductor characteristics and superior physical properties.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Thermodynamic, entanglement and spin Hall conductivity on kagome-honeycomb lattice system

Leonardo S. Lima

Summary: This study investigates the thermodynamic quantities, such as entropy, specific heat, and magnetic susceptibility, in the next-nearest-neighbors Heisenberg model on a honeycomb-kagome lattice. The linear spin-wave approach is applied to obtain the temperature-dependent behavior of these quantities. Additionally, the entanglement negativity, a quantifier of quantum entanglement, and the spin Hall conductivity are also studied. The results show that all the thermodynamic quantities, as well as the entanglement negativity and spin Hall conductivity, exhibit an increasing trend with temperature. Furthermore, it is found that all the analyzed quantities approach zero in the low-temperature limit, consistent with experimental observations.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Large conventional and inverse magnetocaloric effects in RE2Ga2Mg (RE = Tm, Er, Ho) compounds

Zhaoxing Wang, Maximilian Kai Reimann, Wang Chen, Yikun Zhang, Rainer Poettgen

Summary: The Mo2FeB2-type compounds RE2Ga2Mg (RE = Tm, Er, Ho) exhibit a large magnetocaloric effect, making them promising for cryogenic magnetic cooling applications.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)