4.6 Article

Photoluminescence properties of various CVD-grown ZnO nanostructures

Journal

JOURNAL OF LUMINESCENCE
Volume 130, Issue 7, Pages 1142-1146

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jlumin.2010.02.010

Keywords

ZnO nanostructures; Photoluminescence

Categories

Ask authors/readers for more resources

We have studied systematically room-temperature photoluminescence (PL) properties of many nanostructured ZnO samples grown by chemical vapour deposition (CVD). Their PL spectra consist of two emissions peaked in the ultraviolet (UV) and green regions. The relative intensity of these emissions depends on the excitation energy density, size and morphology of ZnO nanostructures. Based on the excitation-density dependence of the integrated intensity ratio of UV-to-green emission, we could classify PL spectra of ZnO nanostructures into three groups characteristic of size and morphology. Our study also reveals that with increasing excitation density, the UV-peak position shifts slightly towards longer wavelengths while the green emission around 514-520 nm is almost unchanged. This green-luminescence emission is dominant when the nanostructure sizes range from 20 to 200 nm, which is related to a large surface-to-volume ratio. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available