4.8 Article

The combined effects of high penetration of wind and PV on power system frequency response

Journal

APPLIED ENERGY
Volume 145, Issue -, Pages 320-330

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2015.02.044

Keywords

Frequency response; Secondary PV trip; Wind and PV; Power system operation

Funding

  1. Australian Research Council

Ask authors/readers for more resources

To achieve clean energy targets, more renewable generators - mainly wind and photovoltaic (PV) - are being integrated into electricity networks. However, wind and PV are non-synchronous generators to the grid and they traditionally have neither enough inertia response nor governor support to control major frequency excursions under most situations. Currently in South Australia, the combined generation of wind and rooftop PV has nearly reached the level of average demand with minor support through interconnection import. In such a situation it is likely that there may be fewer synchronous machines online for frequency regulation. Under such a scenario, a contingency could produce a more severe frequency excursion, violating in place frequency standards. Further, many distributed PV systems in South Australia may have a default under-frequency protection setting, which could be higher than the under-frequency load shedding (UFLS) threshold. Hence, a moderate generation/import trip may cause a massive secondary PV trip, which may result in an unacceptably low frequency, triggering further load shedding. This will certainly have an adverse impact on network security. A similar issue of secondary PV trip is not restricted to South Australia and may occur in other regions and countries as well. In this paper, a network which loosely represents the Australian National Electricity Market (NEM) is selected and modified to investigate and analyze network frequency response under high non-synchronous machine penetration. This network contains all necessary models for a comprehensive frequency response study, such as synchronous machine, governor, stabilizer and wind generator. The relevant functions such as load frequency relief, PV tripping and load shedding which are essential for frequency response evaluation are established in the approved and well-accepted platform - PSS (R) E. The results show that low inertia and secondary PV tripping can become serious issues for network frequency regulation and in some situations they can even cause system oscillation and stability concerns. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available