4.8 Article

Comparative study of the thermal and power performances of a semi-transparent photovoltaic facade under different ventilation modes

Journal

APPLIED ENERGY
Volume 138, Issue -, Pages 572-583

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2014.10.003

Keywords

Building-integrated photovoltaic; Double-skin facade; Solar heat gain coefficient; Power performance; Thermal performance

Funding

  1. Innovation and Technology Commission of the Hong Kong Special Administrative Region (HKSAR) through Innovation & Technology Fund [GHP/040/08GD]
  2. Hong Kong Polytechnic University [1-ZV6Z]

Ask authors/readers for more resources

This paper studied the thermal and power performances of a ventilated photovoltaic facade under different ventilation modes, and appropriate operation strategies for different weather conditions were proposed accordingly to maximize its energy conversion efficiency. This ventilated PV double-skin facade (PV-DSF) consists of an outside layer of semi-transparent amorphous silicon (a-Si) PV laminate, an inward-openable window and a 400 mm airflow cavity. Before installation, the electrical characteristics under standard testing conditions (STC) and the temperature coefficients of the semi-transparent PV module were tested and determined in the laboratory. Field measurements were carried out to investigate the impact of different ventilation modes, namely, ventilated, buoyancy-driven ventilated and non-ventilated, on the thermal and power performances of this PV-DSF. The results show that the ventilated PV-DSF provides the lowest average solar heat gain coefficient (SHGC) and the non-ventilated PV-DSF provides the best thermal insulation performance. In terms of power performance, the energy output of the ventilated PV-DSF is greater than those of the buoyancy-driven ventilated and non-ventilated PV-DSFs by 1.9% and 3%, respectively, due to its much lower operating temperature. Based on the experimental results, a conclusion was drawn that the ventilation design can not only reduce the heat gain of PV-DSF but also improve the energy conversion efficiency of PV modules by bringing down their operating temperature. In addition, an optimum operation strategy is recommended for this kind of PV-DSF to maximize its overall energy efficiency under different weather conditions. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available