4.6 Article

Transient Systemic Inflammation Does Not Alter the Induction of Tolerance to Gastric Autoantigens by Migratory Dendritic Cells

Journal

JOURNAL OF IMMUNOLOGY
Volume 192, Issue 11, Pages 5023-5030

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1303429

Keywords

-

Categories

Funding

  1. National Health and Medical Research Council of Australia

Ask authors/readers for more resources

It has been proposed that activation of dendritic cells (DCs) presenting self-antigens during inflammation may lead to activation of autoreactive T cells and the development of autoimmunity. To test this hypothesis, we examined the presentation of the autoantigen recognized in autoimmune gastritis, gastric H+/K+ ATPase, which is naturally expressed in the stomach and is constitutively presented in the stomach-draining lymph nodes. Systemic administration to mice of the TLR9 agonist CpG DNA, agonist anti-CD40 Ab, or TLR4 agonist LPS all failed to abrogate the process of peripheral clonal deletion of H+/K+ ATPase-specific CD4 T cells or promote the development of autoimmune gastritis. We demonstrated that migratory DCs from the stomach-draining lymph nodes are the only DC subset capable of constitutively presenting the endogenous gastric H+/K+ ATPase autoantigen in its normal physiological context. Analysis of costimulatory molecules indicated that, relative to resident DCs, migratory DCs displayed a partially activated phenotype in the steady state. Furthermore, migratory DCs were refractory to stimulation by transient exposure to TLR agonists, as they failed to upregulate costimulatory molecules, secrete significant amounts of inflammatory cytokines, or induce differentiation of effector T cells. Together, these data show that transient systemic inflammation failed to break tolerance to the gastric autoantigen, as migratory DCs presenting the gastric autoantigen remain tolerogenic under such conditions, demonstrating the robust nature of peripheral tolerance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available