4.7 Article

Storage in confined aquifer: Spectral analysis of groundwater responses to seismic Rayleigh waves

Journal

JOURNAL OF HYDROLOGY
Volume 374, Issue 1-2, Pages 83-91

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhydrol.2009.06.002

Keywords

Groundwater; Storage; Rayleigh waves; Spectral analysis; Seismic; Taiwan

Funding

  1. Institute of Nuclear Energy Research (AEC) of Taiwan
  2. Department of Geosciences of National Taiwan University

Ask authors/readers for more resources

It is frequently found that the fluctuations observed in aquifer-well systems demonstrate high coherence to nearby boundary disturbances, or more specific, in response to the vertical motion of seismic Rayleigh waves. This study derives the spectral relationship between groundwater head and vertical displacement disturbed by Rayleigh waves in the time-frequency domain. Essentially, the groundwater storage property, e.g. storage coefficient or specific storage, representing the amount of water released from storage when the head changes from water expansion and aquifer compression occur. They can be determined using the spectral representation of the factors associated to groundwater head and Rayleigh waves. For this study, the Sumatra-Andaman Islands Earthquake with magnitude 9 at UT 2004/12/26 00:58:53.45 is used as the seismic source while a groundwater monitoring well and a seismological station located on the east of Taiwan acted as the receivers. The time series data associated with the observed groundwater head and vertical displacement of Rayleigh waves are used to evaluate spectral response analyzing the autospectral density, cross-spectral density, and coherence between them. The resultant spectral estimates can be used to determine the storage coefficient and specific storage of the case site to be on the order of 10(-3) and 10(-4) (m(-1)), respectively. In addition, the matrix bulk modulus also demonstrated a linear trend with porosity by taking the value of standard water modulus. It suggests that the storage of an aquifer can be robustly estimated using spectral representations and responses from head changes in groundwater and vertical displacement of Rayleigh waves. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Correction Engineering, Environmental

Potential volume for CO2 deep ocean sequestration: an assessment of the area located on western Pacific Ocean (vol 24, pg 705, 2010)

David Ching-Fang Shih, Yih-Min Wu, Jyr-Ching Hu

STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT (2016)

Article Engineering, Civil

Groundwater storage inferred from earthquake activities around East Asia and West Pacific Ocean

David Ching-Fang Shih

JOURNAL OF HYDROLOGY (2017)

Article Engineering, Environmental

Hydraulic diffusivity in a coastal aquifer: spectral analysis of groundwater level in responses to marine system

David Ching-Fang Shih

STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT (2018)

Article Water Resources

Spectral decomposition of periodic ground water fluctuation in a coastal aquifer

David Ching-Fang Shih, Gwo-Fong Lin, Yee-Ping Jia, Yue-Gau Chen, Yih-Min Wu

HYDROLOGICAL PROCESSES (2008)

Article Engineering, Environmental

Uncertainty propagation of hydrodispersive transfer in an aquifer: an illustration of one-dimensional contaminant transport with slug injection

David Ching-Fang Shih, Yue-Gau Chen, Gwo-Fong Lin, Yih-Min Wu

STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT (2009)

Article Engineering, Environmental

Sea level fluctuations on the east coast of Taiwan that overlie continental shelf break

David Ching-Fang Shih, Yue-Gau Chen, Gwo-Fong Lin, Yih-Min Wu, Yee-Ping Jia, Chih-Ming Ma

STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT (2010)

Article Engineering, Environmental

Potential volume for CO2 deep ocean sequestration: an assessment of the area located on western Pacific Ocean

David Ching-Fang Shih, Yih-Min Wu, Jyr-Ching Hu

STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT (2010)

Article Engineering, Environmental

Assessment of long-term variation in displacement for a GPS site adjacent to a transition zone between collision and subduction

David Ching-Fang Shih, Yih-Min Wu, Gwo-Fong Lin, Jyr-Ching Hu, Yue-Gau Chen, Chien-Hsin Chang

STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT (2008)

Article Engineering, Environmental

Wind characterization and potential assessment using spectral analysis

David Ching-Fang Shih

STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT (2008)

Article Engineering, Environmental

Uncertainty and importance assessment using differential analysis: an illustration of corrosion depth of spent nuclear fuel canister

DCF Shih, GF Lin

STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT (2006)

Article Engineering, Civil

Reconstructing high-resolution groundwater level data using a hybrid random forest model to quantify distributed groundwater changes in the Indus Basin

Arfan Arshad, Ali Mirchi, Javier Vilcaez, Muhammad Umar Akbar, Kaveh Madani

Summary: High-resolution, continuous groundwater data is crucial for adaptive aquifer management. This study presents a predictive modeling framework that incorporates covariates and existing observations to estimate groundwater level changes. The framework outperforms other methods and provides reliable estimates for unmonitored sites. The study also examines groundwater level changes in different regions and highlights the importance of effective aquifer management.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Hydrological modelling of large-scale karst-dominated basin using a grid-based distributed karst hydrological model

Lihua Chen, Jie Deng, Wenzhe Yang, Hang Chen

Summary: A new grid-based distributed karst hydrological model (GDKHM) is developed to simulate streamflow in the flood-prone karst area of Southwest China. The results show that the GDKHM performs well in predicting floods and capturing the spatial variability of karst system.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Using a physics-based hydrological model and storm transposition to investigate machine-learning algorithms for streamflow prediction

Faruk Gurbuz, Avinash Mudireddy, Ricardo Mantilla, Shaoping Xiao

Summary: Machine learning algorithms have shown better performance in streamflow prediction compared to traditional hydrological models. In this study, researchers proposed a methodology to test and benchmark ML algorithms using artificial data generated by physically-based hydrological models. They found that deep learning algorithms can correctly identify the relationship between streamflow and rainfall in certain conditions, but fail to outperform traditional prediction methods in other scenarios.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Uncertainty separation of drought projection in the 21st century using SMILEs and CMIP6

Yadong Ji, Jianyu Fu, Bingjun Liu, Zeqin Huang, Xuejin Tan

Summary: This study distinguishes the uncertainty in drought projection into scenario uncertainty, model uncertainty, and internal variability uncertainty. The results show that the estimation of total uncertainty reaches a minimum in the mid-21st century and that model uncertainty is dominant in tropical regions.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Quantifying the natural flood management potential of leaky dams in upland catchments, Part II: Leaky dam impacts on flood peak magnitude

Z. R. van Leeuwen, M. J. Klaar, M. W. Smith, L. E. Brown

Summary: This study quantifies the effectiveness of leaky dams in reducing flood peak magnitude using a transfer function noise modelling approach. The results show that leaky dams have a significant but highly variable impact on flood peak magnitude, and managing expectations should consider event size and type.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Forecasting and optimization for minimizing combined sewer overflows using Machine learning frameworks and its inversion techniques

Zeda Yin, Yasaman Saadati, M. Hadi Amini, Linlong Bian, Beichao Hu

Summary: Combined sewer overflows pose significant threats to public health and the environment, and various strategies have been proposed to mitigate their adverse effects. Smart control strategies have gained traction due to their cost-effectiveness but face challenges in balancing precision and computational efficiency. To address this, we propose exploring machine learning models and the inversion of neural networks for more efficient CSO prediction and optimization.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Characterizing nitrogen dynamics and their response to sediment dredging in a lowland rural river

Qimou Zhang, Jiacong Huang, Jing Zhang, Rui Qian, Zhen Cui, Junfeng Gao

Summary: This study developed a N-cycling model for lowland rural rivers covered by macrophytes and investigated the N imports, exports, and response to sediment dredging. The findings showed a considerable N retention ability in the study river, with significant N imports from connected rivers and surrounding polders. Sediment dredging increased particulate nitrogen resuspension and settling rates, while decreasing ammonia nitrogen release, denitrification, and macrophyte uptake rates.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Using a two-step downscaling method to assess the impact of climate change on total nitrogen load in a small basin

Xue Li, Yingyin Zhou, Jian Sha, Man Zhang, Zhong-Liang Wang

Summary: High-resolution climate data is crucial for predicting regional climate and water environment changes. In this study, a two-step downscaling method was developed to enhance the spatial resolution of GCM data and improve the accuracy for small basins. The method combined medium-resolution climate data with high-resolution topographic data to capture spatial and temporal details. The downscaled climate data were then used to simulate the impacts of climate change on hydrology and water quality in a small basin. The results demonstrated the effectiveness of the downscaling method for spatially differentiated simulations.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Permafrost on the Tibetan Plateau is degrading: Historical and projected trends

Tongqing Shen, Peng Jiang, Jiahui Zhao, Xuegao Chen, Hui Lin, Bin Yang, Changhai Tan, Ying Zhang, Xinting Fu, Zhongbo Yu

Summary: This study evaluates the long-term interannual dynamics of permafrost distribution and active layer thickness on the Tibetan Plateau, and predicts future degradation trends. The results show that permafrost area has been decreasing and active layer thickness has been increasing, with an accelerated degradation observed in recent decades. This has significant implications for local water cycle processes, water ecology, and water security.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Quantifying precipitation moisture contributed by different atmospheric circulations across the Tibetan Plateau

Chi Zhang, Xu Zhang, Qiuhong Tang, Deliang Chen, Jinchuan Huang, Shaohong Wu, Yubo Liu

Summary: Precipitation over the Tibetan Plateau is influenced by systems such as the Asian monsoons, the westerlies, and local circulations. The Indian monsoon, the westerlies, and local circulations are the main systems affecting precipitation over the entire Tibetan Plateau. The East Asian summer monsoon primarily affects the eastern Tibetan Plateau. The Indian monsoon has the greatest influence on precipitation in the southern and central grid cells, while the westerlies have the greatest influence on precipitation in the northern and western grid cells. Local circulations have the strongest influence on the central and eastern grid cells.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

A methodology to improve the accuracy of Total phosphorous diffuse load estimates from agroforestry watersheds

Manuel Almeida, Antonio Rodrigues, Pedro Coelho

Summary: This study aimed to improve the accuracy of Total Phosphorus export coefficient models, which are essential for water management. Four different models were applied to 27 agroforestry watersheds in the Mediterranean region. The modeling approach showed significant improvements in predicting the Total Phosphorus diffuse loads.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Prediction of dissolved organic nitrogen via spectroscopic fingerprint in the shallow riverbed sediments of effluent-dominated rivers: A case study in Xi'an, northwest China

Yutao Wang, Haojie Yin, Ziyi Wang, Yi Li, Pingping Wang, Longfei Wang

Summary: This study investigated the distribution and transformation of dissolved organic nitrogen (DON) in riverbed sediments impacted by effluent discharge. The authors found that the spectral characteristics of dissolved organic matter (DOM) in surface water and sediment porewater could be used to predict DON variations in riverbed sediments. Random forest and extreme gradient boosting machine learning methods were employed to provide accurate predictions of DON content and properties at different depths. These findings have important implications for wastewater discharge management and river health.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Uncertainty analysis of 100-year flood maps under climate change scenarios

Saba Mirza Alipour, Kolbjorn Engeland, Joao Leal

Summary: This study assesses the uncertainty associated with 100-year flood maps under different scenarios using Monte Carlo simulations. The findings highlight the importance of employing probabilistic approaches for accurate and secure flood maps, with the selection of probability distribution being the primary source of uncertainty in precipitation.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Hydrological consequences of controlled drainage with subirrigation

Janine A. de Wit, Marjolein H. J. van Huijgevoort, Jos C. van Dam, Ge A. P. H. van den Eertwegh, Dion van Deijl, Coen J. Ritsema, Ruud P. Bartholomeus

Summary: The study focuses on the hydrological consequences of controlled drainage with subirrigation (CD-SI) on groundwater level, soil moisture content, and soil water potential. The simulations show that CD-SI can improve hydrological conditions for crop growth, but the success depends on subtle differences in geohydrologic characteristics.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Understanding the global success criteria for managed aquifer recharge schemes

Constantin Seidl, Sarah Ann Wheeler, Declan Page

Summary: Water availability and quality issues will become increasingly important in the future due to climate change impacts. Managed Aquifer Recharge (MAR) is an effective water management tool, but often overlooked. This study analyzes global MAR applications and identifies the key factors for success, providing valuable insights for future design and application.

JOURNAL OF HYDROLOGY (2024)