4.3 Article

Ontogenetic changes in limb bone structural proportions in mountain gorillas (Gorilla beringei berirtgei)

Journal

JOURNAL OF HUMAN EVOLUTION
Volume 65, Issue 6, Pages 693-703

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jhevol.2013.06.008

Keywords

Locomotion; Diaphyseal strength

Funding

  1. National Science Foundation [BCS-0852866, BCS-0964944]
  2. National Geographic Society's Committee for Research and Exploration [NGS-8486-08]
  3. Leakey Foundation
  4. George Washington University
  5. Dian Fossey Gorilla Fund International's Karisoke Research Center
  6. Max Planck Research Award
  7. Direct For Social, Behav & Economic Scie
  8. Division Of Behavioral and Cognitive Sci [0852866] Funding Source: National Science Foundation
  9. Division Of Behavioral and Cognitive Sci
  10. Direct For Social, Behav & Economic Scie [0964944] Funding Source: National Science Foundation

Ask authors/readers for more resources

Behavioral studies indicate that adult mountain gorillas (Gorilla beringei) are the most terrestrial of all nonhuman hominoids, but that infant mountain gorillas are much more arboreal. Here we examine ontogenetic changes in diaphyseal strength and length of the femur, tibia, humerus, radius, and ulna in 30 Virunga mountain gorillas, including 18 immature specimens and 12 adults. Comparisons are also made with 14 adult western lowland gorillas (Gorilla gorilla gorilla), which are known to be more arboreal than adult mountain gorillas. Infant mountain gorillas have significantly stronger forelimbs relative to hind limbs than older juveniles and adults, but are nonsignificantly different from western lowland gorilla adults. The change in inter-limb strength proportions is abrupt at about two years of age, corresponding to the documented transition to committed terrestrial quadrupedalism in mountain gorillas. The one exception is the ulna, which shows a gradual increase in strength relative to the radius and other long bones during development, possibly corresponding to the gradual adoption of stereotypical fully pronated knuckle-walking in older juvenile gorillas. Inter-limb bone length proportions show a contrasting developmental pattern, with hind limb/forelimb length declining rapidly from birth to five months of age, and then showing no consistent change through adulthood. The very early change in length proportions, prior to significant independent locomotion, may be related to the need for relatively long forelimbs for climbing in a large-bodied hominoid. Virunga mountain gorilla older juveniles and adults have equal or longer forelimb relative to hind limb bones than western lowland adults. These findings indicate that both ontogenetically and among closely related species of Gorilla, long bone strength proportions better reflect actual locomotor behavior than bone length proportions. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available