4.4 Article

Laminar Heat and Mass Transfer in Rotating Cone-and-Plate Devices

Journal

Publisher

ASME
DOI: 10.1115/1.4002606

Keywords

cone-and-plate device; rotating disk; heat and mass transfer; efficiency

Ask authors/readers for more resources

The convective diffusion of feeding culture and the effect of fluid shear stress on endothelial cells are frequently investigated in cone-and-plate devices. Laminar fluid flow and heat and mass transfer in a cone-and-plate device, with cone apex touching the plate/disk, were simulated. The disk-to-cone gap made 1-5 deg. Transport equations were reduced to a system of self-similar ordinary differential equations solved numerically. Cases studied were a rotating cone and a stationary plate, and vice versa. The cone was isothermal, while the disk temperature followed a power-law radial distribution; boundary concentrations were constant. Prandtl and Schmidt numbers varied from 0.1 to 800. Temperature/diffusion profiles in the gap and Nusselt and Sherwood numbers exhibit different regimes of heat/mass transfer, depending on the disk surface temperature distribution. [DOI: 10.1115/1.4002606]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available