4.7 Article

Atrazine degradation using chemical-free process of USUV: Analysis of the micro-heterogeneous environments and the degradation mechanisms

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 275, Issue -, Pages 166-174

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2014.05.007

Keywords

Atrazine; Ultrasound; UV; Mechanism; Salt effect

Funding

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [PolyU 5146/10E]

Ask authors/readers for more resources

The effectiveness of sonolysis (US), photolysis (UV), and sonophotolysis (USUV) for the degradation of atrazine (ATZ) was investigated. An untypical kinetics analysis was found useful to describe the combined process, which is compatible to pseudo first-order kinetics. The heterogeneous environments of two different ultrasounds (20 and 400 kHz) were evaluated. The heterogeneous distribution of ATZ in the ultrasonic solution was found critical in determining the reaction rates at different frequencies. The presence of NaCl would promote/inhibit the rates by the growth and decline of salting out effect and surface tension. The benefits of combining these two processes were for the first time investigated from the aspect of promoting the intermediates degradation which were resistant in individual processes. UV caused a rapid transformation of ATZ to 2-hydroxyatrazine (OIET), which was insensitive to UV irradiation; however, US and URN were able to degrade OIET and other intermediates through center dot OH attack. On the other hand, UV irradiation also could promote radical generation via H2O2 decomposition, thereby resulting in less accumulation of more hydrophilic intermediates, which are difficult to degradation in the US process. Reaction pathways for ATZ degradation by all three processes are proposed. USUV achieved the greatest degree of ATZ mineralization with more than 60% TOC removed, contributed solely by the oxidation of side chains. Ammeline was found to be the only end-product in both US and USUV processes. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available