4.7 Article

Remediation of polluted soil by a two-stage treatment system: Desorption of phenanthrene in soil and electrochemical treatment to recover the extraction agent

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 173, Issue 1-3, Pages 794-798

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2009.08.103

Keywords

Electrochemical treatment; PAHs; Phenanthrene; Recycled surfactant; Washing

Ask authors/readers for more resources

In this study, the feasibility of a two-stage treatment process for the remediation of soil contaminated with phenanthrene as a model polycyclic aromatic hydrocarbon (PAH) has been assessed at laboratory scale. The initial stage of the process involved contacting contaminated soil with a solution of Tween 80 to enhance the desorption of phenanthrene from soil. In order to simulate a flushing process this initial stage was carried out in a washing packed-bed soil column. At the optimised conditions the total phenanthrene removal attained a value of almost 65% after 3 days. The second stage of the suggested treatment involved regeneration of the washing solution via phenanthrene degradation. The use of an electrochemical treatment was proposed for surfactant recovery and degradation of contaminants present in the solution collected. This oxidation was accomplished via an electrochemical cell by using graphite as electrode material. The phenanthrene was almost totally degraded in 3 days, reaching a degradation of about 96%. In addition, a test in which this regenerated solution was employed in the washing process was carried out in shake flask and washing column. The results demonstrate that selective degradation of pollutants by electrochemical treatment is potentially effective in reusing surfactant in another polluted soil treatment. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation

Crina Calenciuc, Antia Fdez-Sanroman, Gabriela Lama, Sivasankar Annamalai, Angeles Sanroman, Marta Pazos

Summary: This review presents the current state of using Advanced Oxidation Processes (AOPs) for soil remediation. The techniques are categorized into three types depending on the decontamination process. The review highlights the achievements of these technologies and emphasizes the need for further investigation and development.

CATALYSTS (2022)

Article Engineering, Environmental

Exploring the pressurized heterogeneous electro-Fenton process and modelling the system

Veronica Poza-Nogueiras, Angela Moratalla, Marta Pazos, Angeles Sanroman, Cristina Saez, Manuel A. Rodrigo

Summary: In this research, a bench-scale installation was tested for the heterogeneous electro-Fenton treatment of clofibric acid. The use of a pressurized-jet aerator and iron-containing alginate beads as catalysts showed promising results in enhancing the efficiency of pollutant removal and reducing energy consumption. However, further increase in pressure did not lead to significant improvement. The integrity of the catalyst was not compromised by pressure. A mathematical model was also developed to better understand the behavior of the reaction system.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Environmental Sciences

Peroxymonosulphate Activation by Basolite® F-300 for Escherichia coli Disinfection and Antipyrine Degradation

Antia Fdez-Sanroman, Marta Pazos, Angeles Sanroman

Summary: This study evaluated the removal of persistent emerging and dangerous pollutants (pharmaceuticals and pathogens) in synthetic wastewater using heterogeneous Advanced Oxidation Processes. The results showed that increasing the concentration of PMS and Basolite (R) F-300 improved the treatment efficiency.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH (2022)

Article Chemistry, Physical

Heterogeneous Advanced Oxidation Processes: Current Approaches for Wastewater Treatment

Gabriela Lama, Jessica Meijide, Angeles Sanroman, Marta Pazos

Summary: Water pollution is a serious global environmental issue, with emerging pollutants posing risks to human and animal health. Advanced oxidation processes have been proposed as an effective technology for removing these pollutants. Recent research focuses on the use of different types of heterogeneous catalysts to overcome limitations of conventional treatment methods.

CATALYSTS (2022)

Article Biotechnology & Applied Microbiology

Laccase multi-point covalent immobilization: characterization, kinetics, and its hydrophobicity applications

Abdelmageed M. M. Othman, Angeles Sanroman, Diego Moldes

Summary: In this study, it was found that the multi-point covalently immobilized laccase from Myceliophthora thermophila on the modified immobilized carrier (Immobead 150P) showed the best immobilization characteristics, retaining 95% of its initial activity after 10 cycles of operation at pH 3.0 and temperature 70 degrees C. The thermodynamic parameters of thermal inactivation demonstrated the positive impact of immobilization. The immobilized enzyme exhibited enhanced stability in alkaline conditions and the ability to provide hydrophobic properties to wood.

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY (2023)

Article Electrochemistry

Retrofitting of carbon-supported bimetallic Ni-based catalysts by phosphorization for hydrogen evolution reaction in acidic media

Aida M. Diez, Xiang Lyu, Marta Pazos, M. Angeles Sanroman, Geoff McCool, Oleg I. Lebedev, Yury Kolen'ko, Alexey Serov

Summary: This work introduces a convenient phosphorization protocol to convert commercial bimetallic Ni-Mo and Ni-Re electrocatalysts into their respective phosphides, enabling them to be stable under acidic conditions and suitable for water reduction in acidic electrolyte.

ELECTROCHIMICA ACTA (2023)

Article Environmental Sciences

Photocatalytic solid-phase degradation of polyethylene with fluoride-doped titania under low consumption ultraviolet radiation

Aida M. Diez, Marta Pazos, M. Angeles Sanroman, Helen Valencia Naranjo, Joachim Mayer, Yury Kolen'ko

Summary: This study successfully synthesized and characterized fluoride-doped-TiO2 and demonstrated its applicability in solid-phase photodegradation of polyethylene films for the first time. After three weeks of UV A radiation using a low consumption LED lamp, the polyethylene films containing only 2% of the photocatalyst experienced nearly 50% weight loss, surpassing previously reported data. The results suggest the potential for future production of self-photodegradable plastics for environmental and wastewater treatment applications.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2023)

Article Chemistry, Physical

Peroxymonosulfate Activation by Different Synthesized CuFe-MOFs: Application for Dye, Drugs, and Pathogen Removal

Antia Fdez-Sanroman, Barbara Lomba-Fernandez, Marta Pazos, Emilio Rosales, Angeles Sanroman

Summary: Three CuFe-MOFs with different structures were synthesized successfully by varying the ratio of solvents, salts, or temperature. CuFe(BDC-NH2)(D) and CuFe(BDC-NH2)(S) exhibited improved PMS activation for Rhodamine B removal, achieving a removal rate of around 92%. The best degradation system for a mixture of antibiotic and anti-inflammatory drugs was the photo-assisted activation of PMS using CuFe(BDC-NH2)(D) and CuFe(BDC-NH2)(S), resulting in complete degradation within 1 hour. CuFe(BDC-NH2)(R)/PMS showed higher antibacterial activity due to its higher copper content.

CATALYSTS (2023)

Article Chemistry, Physical

Application of Deep Eutectic Solvents (DES) for the Synthesis of Iron Heterogeneous Catalyst: Application to Sulfamethoxazole Degradation by Advanced Oxidation Processes

Anton Puga, Emilio Rosales, Marta Pazos, Maria Angeles Sanroman

Summary: The synthesis of an iron catalyst (Fe-DES) was proposed in this work, which was characterized physically and chemically. The Fe-DES was shown to be a multipurpose catalyst that can be applied in various processes for the removal of pharmaceuticals in wastewater.

CATALYSTS (2023)

Article Biotechnology & Applied Microbiology

Immobilization of esterase from Bacillus subtilis on Halloysite nanotubes and applications on dibutyl phthalate degradation

Esin Balci, Emilio Rosales, Marta Pazos, Aysun Sofuoglu, Maria Angeles Sanroman

Summary: This study investigated the degradation of dibutyl phthalate (DBP) using esterase and lipase enzymes from different microorganisms, and examined the feasibility of immobilizing the most effective enzyme on a clayey material. The results showed that esterase from Bacillus subtilis had the highest degradation efficiency and immoblization improved thermal and storage stability. Additionally, the immobilized enzyme composite maintained high catalytic activity after 7 continuous cycles.

ENVIRONMENTAL TECHNOLOGY & INNOVATION (2023)

Review Food Science & Technology

From Waste to Resource: Valorization of Lignocellulosic Agri-Food Residues through Engineered Hydrochar and Biochar for Environmental and Clean Energy Applications-A Comprehensive Review

Silvia Escudero-Curiel, Alba Giraldez, Marta Pazos, Angeles Sanroman

Summary: Agri-food residues and by-products are recognized as valuable products that can be used in other industries, such as environmental remediation. These materials, transformed into biochar and hydrochar through engineering techniques, have substantial potential as versatile adsorbents in wastewater treatment and promising alternatives in various environmental and energy-related applications. This sustainable approach provides cost-effective and satisfactory solutions, addressing environmental concerns and paving the way for a more eco-friendly and resource-efficient future.

FOODS (2023)

Article Biotechnology & Applied Microbiology

Recycling waste by manufacturing biomaterial for environmental engineering: Application to dye removal

Imane Akkari, Zahra Graba, Marta Pazos, Nacer Bezzi, Fatiha Atmani, Amar Manseri, Mohamed Mehdi Kaci

Summary: Due to the rapid growth of bio-waste, there are various difficulties in disposal and governance. Therefore, recycling and repurposing bio-waste for environmental purposes have gained more attention. In this study, a novel activated hydrochar (AHPP) was synthesized from pomegranate peels using hydrothermal carbonization (HTC) followed by phosphoric acid activation. The characteristics of AHPP were determined using various techniques, and its potential for adsorbing Basic Red 46 (BR46) dye was assessed. The results showed that AHPP can effectively adsorb BR46, and it could be reused multiple times.

BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY (2023)

Article Environmental Sciences

Nanostructured copper-organic frameworks for the generation of sulphate radicals: application in wastewater disinfection

Alba Giraldez, Antia Fdez-Sanroman, Daniel Terron, M. Angeles Sanroman, Marta Pazos

Summary: In recent years, the issue of pathogens in the environment has gained widespread concern. New research has been conducted on removing pathogens and persistent pollutants from water. The study evaluated the effectiveness of the nanostructure copper-organic framework, HKUST-1, as a catalyst for eliminating Escherichia coli and generating sulphate radicals through peroxymonosulphate (PMS) activation. The disinfection process was optimized and achieved complete elimination of Escherichia coli growth after 30 minutes using a concentration of 60.5 mg/L HKUST-1 and 0.1 mM PMS. A novel development involving encapsulating HKUST-1 on polyacrylonitrile was proposed to overcome operational limitations and enable continuous treatment in a flow disinfection process.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2023)

Article Engineering, Environmental

Temperature-modulated sensing characteristics of ultrafine Au nanoparticle-loaded porous ZnO nanobelts for identification and determination of BTEX

Shun-Shun Chen, Xu-Xiu Chen, Tian-Yu Yang, Li Chen, Zheng Guo, Xing-Jiu Huang

Summary: A temperature-modulated sensing strategy was proposed to identify and determine BTEX compounds. Highly effective identification of BTEX was achieved using linear discrimination and convolutional neural network analyses. Additionally, quantitative analysis of concentration was accomplished by establishing the relationship between concentration and response.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Particulate matter-induced metabolic recoding of epigenetics in macrophages drives pathogenesis of chronic obstructive pulmonary disease

Myungkyung Noh, Jeong Yeon Sim, Jisung Kim, Jee Hwan Ahn, Hye-Young Min, Jong-Uk Lee, Jong-Sook Park, Ji Yun Jeong, Jae Young Lee, Shin Yup Lee, Hyo-Jong Lee, Choon-Sik Park, Ho-Young Lee

Summary: This study reveals that chronic exposure to PM induces chronic inflammation and development of COPD by dysregulating NAD+ metabolism and subsequent SIRT1 deficiency in pulmonary macrophages. Activation of SIRT1 by resveratrol effectively mitigates PM-induced inflammation and COPD development. Targeting metabolic and epigenetic reprogramming in macrophages induced by PM is a promising strategy for COPD treatment.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Electrocatalytic degradation of nitrogenous heterocycles on confined particle electrodes derived from ZIF-67

Yu Liu, Linlin Qin, Yiming Qin, Tong Yang, Haoran Lu, Yulong Liu, Qiqi Zhang, Wenyan Liang

Summary: Co/NC/PAC electrode was prepared by compounding ZIF-67 with powder-activated carbon for the electrocatalytic treatment of nitrogen-containing heterocyclic compounds. The degradation efficiency of the four compounds reached 90.2-93.7% under optimal conditions, and the degradation order was pyridazine < pyrimidine < pyrazine < pyridine.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Yttrium speciation variability in bauxite residues of various origins, ages and storage conditions

Julien Couturier, Pierre Tamba Oulare, Blanche Collin, Claire Lallemand, Isabelle Kieffer, Julien Longerey, Perrine Chaurand, Jerome Rose, Daniel Borschneck, Bernard Angeletti, Steven Criquet, Renaud Podor, Hamed Pourkhorsandi, Guilhem Arrachart, Clement Levard

Summary: This study analyzes the properties of bauxite residue samples and explores the influence of bauxite ore origin, storage conditions, and storage time. The results show that the speciation of yttrium is related to the origin of bauxite ore, while no significant variation was observed with storage conditions or aging of the residues.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Trophic transfer and their impact of microplastics on estuarine food chain model

Sakthinarenderan Saikumar, Ravi Mani, Mirunalini Ganesan, Inbakandan Dhinakarasamy, Thavamani Palanisami, Dharani Gopal

Summary: Microplastic contamination in marine ecosystems poses a growing concern due to its trophic transfer and negative effects on marine organisms. This study investigates the transfer and impacts of polystyrene microplastics in an estuarine food chain. The results show that microplastics can be transferred through the food chain, although the transfer rates are low. The exposed organisms exhibit stress responses, suggesting the potential risk of microplastics reaching humans through the food chain.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Review Engineering, Environmental

Antibiotic resistance genes and heavy metals in landfill: A review

Yan-Jiao Li, Ying Yuan, Wen-Bing Tan, Bei-Dou Xi, Hui Wang, Kun-Long Hui, Jia-Bao Chen, Yi-Fan Zhang, Lian-Feng Wang, Ren-Fei Li

Summary: This review investigated and analyzed the distribution, composition, and abundance of heavy metals and antibiotic resistance genes (ARGs) in landfill. The results showed that heavy metals have lasting effects on ARGs, and complexes of heavy metals and organic matter are common in landfill. This study provides a new basis to better understand the horizontal gene transfer (HGT) of ARGs in landfill.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

The effect of synthesis conditions on the in situ grown MIL-100(Fe)-chitosan beads: Interplay between structural properties and arsenic adsorption

Jessy Joseph, Ari Vaisanen, Ajay B. Patil, Manu Lahtinen

Summary: Efficient and environmentally friendly porous hybrid adsorbent beads have been developed for the removal of arsenic from drinking water. The structural tuning of the adsorbents has been shown to have a significant impact on their adsorption performance, with high crystallinity leading to increased adsorption capacity and selectivity towards As5+.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Phthalate metabolites in breast milk from mothers in Southern China: Occurrence, temporal trends, daily intake, and risk assessment

Yangyang Liu, Minhua Xiao, Kaiqin Huang, Juntao Cui, Hongli Liu, Yingxin Yu, Shengtao Ma, Xihong Liu, Meiqing Lin

Summary: This study measured the levels of phthalate metabolites in breast milk collected from mothers in southern China. The results showed that phthalates are still prevalent in the region, and breastfeeding contributes to phthalate intake in infants. However, the levels detected do not pose significant health risks to infants based on dietary exposure. The increasing exposure to certain phthalates calls for further research into their sources and potential risks.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Depth significantly affects plastisphere microbial evenness, assembly and co-occurrence pattern but not richness and composition

Zhiqiang Wu, Jianxing Sun, Liting Xu, Hongbo Zhou, Haina Cheng, Zhu Chen, Yuguang Wang, Jichao Yang

Summary: Ocean depth affects microbial diversity, composition, and co-occurrence patterns of microplastic microbial communities. Deterministic processes dominate the assembly of mesopelagic plastisphere microbial communities, while stochastic processes shape the assembly of bathypelagic microbial communities. The relationships between microorganisms in the mesopelagic layer are more complex and stable, with Proteobacteria and Actinobacteriota playing important roles.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Abatement of antibiotics and resistance genes during catalytic ozonation enhanced sludge dewatering process: Synchronized in volume and hazardousness reduction

Tingting Xiao, Renjie Chen, Chen Cai, Shijie Yuan, Xiaohu Dai, Bin Dong, Zuxin Xu

Summary: Based on the efficiency of catalytic ozonation techniques in enhancing sludge dewaterability, this study investigated its effectiveness in simultaneous reduction of antibiotics and antibiotic resistance genes. The results showed that catalytic ozonation conditioning changed the distribution of antibiotics and achieved high degradation rates. It also significantly reduced the abundance of ARGs, inhibited horizontal gene transfer, and decreased the signal transduction of typical ARGs host bacteria.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Unlocking the potential of ferrate(VI) in water treatment: Toward one-step multifunctional solutions

Yang Deng, Xiaohong Guan

Summary: This article discusses two different development approaches for ferrate(VI) technology in water treatment, arguing that process integration is a promising method that can drive technological innovation and revolution in water treatment, achieving higher treatment efficiency, reduced costs and energy consumption, and a smaller physical footprint.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Floating Catalytic Foam with prominent heat-induced convection for the effective photocatalytic removal of antibiotics

Zhe Zhang, Lu Zhang, Zhihao Huang, Yuxin Xu, Qingqing Zhao, Hongju Wang, Meiqing Shi, Xiangnan Li, Kai Jiang, Dapeng Wu

Summary: In this study, a floating catalytic foam was designed and prepared to enhance the mass transfer in immobilized photocatalysts for wastewater treatment. The floating catalytic foam could float on the water surface and establish a temperature gradient, effectively promoting the diffusion and adsorption of target molecules during the photocatalytic process.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Mechanism and synergistic effect of sulfadiazine (SDZ) and cadmium toxicity in spinach (Spinacia oleracea L.) and its alleviation through zinc fortification

Muhammad Nafees, Adiba Khan Sehrish, Sarah Owdah Alomrani, Linlin Qiu, Aasim Saeed, Shoaib Ahmad, Shafaqat Ali, Hongyan Guo

Summary: The accumulation of cadmium and antibiotics in edible plants and fertile soil is a worldwide problem. This study investigated the potential of zinc oxide nanoparticles to alleviate the toxicity of both cadmium and antibiotics and promote spinach growth.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Aminoalkyl organosilicon with dual chemical sites for SO2 absorption and analysis of site-specific absorption entropy and enthalpy

Lurui Wan, Kai Wang, Yuan Chen, Zhiyong Xu, Wenbo Zhao

Summary: In this study, a low viscosity and high thermal stability SO2 absorbent with dual interacting sites was successfully synthesized. The absorbent showed the highest absorption enthalpy change and entropy change values among reported SO2 absorbents, and exhibited lower viscosity and comparable thermal stability to ILs.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Improvement of Fe(III)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism

Zhengwei Zhou, Guojie Ye, Yang Zong, Zhenyu Zhao, Deli Wu

Summary: This study utilized Mo powder and STPP to enhance the performance of the sodium percarbonate system in pollutant degradation. The presence of Mo and STPP resulted in a higher degradation rate of the model pollutant SMX, with low oxidant consumption. The system generated multiple active species through a series of chain reactions at different pH values, exhibiting excellent performance towards electron-rich pollutants. Furthermore, Mo demonstrated excellent stability and reusability.

JOURNAL OF HAZARDOUS MATERIALS (2024)