4.7 Article

Effect of pre-treatments on hydrolysis and methane production potentials of by-products from meat-processing industry

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 164, Issue 1, Pages 247-255

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2008.08.002

Keywords

Anaerobic digestion; Hydrolysis; Meat-processing industry; Methane; Pre-treatment

Funding

  1. Maj and Tor Nessling Foundation
  2. European Union
  3. City of Mikkeli

Ask authors/readers for more resources

In this study, the effect of five pre-treatments (thermal, ultrasound, acid, base and bacterial product) on hydrolysis and methane production potentials of four by-products from meat-processing industry was studied. The bacterial product Liquid Certizyme 5 (TM) increased soluble chemical oxygen demand (CODsol) of digestive tract content and drumsieve waste the most as compared to untreated material (62 and 96%, respectively), while ultrasound was the most effective to increase CODsol with dissolved air flotation (DAF) sludge (88%) and grease trap sludge (188%). In batch experiments, thermal treatment increased methane production potential of drumsieve waste, acid of grease trap sludge and all pre-treatments of DAF sludge. However, with all other pre-treatments, methane production potential was decreased compared to untreated materials, apparently due to inhibition by hydrolysis products and/or possible re-crystallization of some compounds. Methane production potentials from the untreated materials were as follows: digestive tract content 400 +/- 50 m(3) CH4/t volatile solids (VS)(added), drumsieve waste 230 +/- 20 m(3) CH4/tVS(added), DAF sludge 340 +/- 17 m(3) CH4/tVS(added) and grease trap sludge 900 +/- 44 m(3) CH4/tVS(added). (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Thermodynamics

Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system

Mingming Zhang, Anton Timoshin, Essam A. Al-Ammar, Mika Sillanpaa, Guiju Zhang

Summary: The current paper proposes a new hybrid system based on a binary-geothermal system to generate power, cooling capacity, freshwater, and hydrogen. The system integrates organic Rankine cycle, ejector refrigeration cycle, proton exchange membrane electrolyzer, and reverse osmosis desalination unit. Through precise modeling in Matlab, the system's performance is optimized using multi-objective grey wolf optimization. Results show that the system can achieve high power output, cooling capacity, hydrogen production, and freshwater generation with cost-effectiveness.

ENERGY (2023)

Article Environmental Sciences

Wastewater Management Using Coagulation and Surface Adsorption through Different Polyferrics in the Presence of TiO2-g-PMAA Particles

Heba Saed Kariem Alawamleh, Seyedsahand Mousavi, Danial Ashoori, Hayder Mahmood Salman, Sasan Zahmatkesh, Mika Sillanpaa

Summary: The study aims to improve the performance of membrane treatment for oily wastewater. The effects of pre-treatment, membrane modification, and operational parameters on the microfiltration membrane system were investigated. The results showed that using PFS as a coagulant at pH=6 can achieve a COD reduction of 98%, while using PFC at the same conditions only removes 81% of COD.

WATER (2023)

Article Biochemistry & Molecular Biology

Biomolecule Protective and Photocatalytic Potential of Cellulose Supported MoS2/GO Nanocomposite

Muhammad Pervaiz, Muti Ur Rehman, Faisal Ali, Umer Younas, Mika Sillanpaa, Rizwan Kausar, Asma A. Alothman, Mohamed Ouladsmane, Mohammad Abdul Mazid

Summary: Cellulose/MoS2/GO nanocomposite was synthesized using a hydrothermal method. The formation of the nanocomposite was confirmed by UV-visible and FTIR spectroscopy, and its particle size and morphology were characterized. The nanocomposite exhibited promising biomolecule protective and photocatalytic potential, making it suitable for environmental remediation.

BIOINORGANIC CHEMISTRY AND APPLICATIONS (2023)

Article Thermodynamics

The innovative optimization techniques for forecasting the energy consumption of buildings using the shuffled frog leaping algorithm and different neural networks

Yiran Yang, Gang Li, Tao Luo, Mohammed Al-Bahrani, Essam A. Al-Ammar, Mika Sillanpaa, Shafaqat Ali, Xiujuan Leng

Summary: This study aims to predict building energy consumption by using neural networks such as support vector machine, gated recurrent unit, extreme learning machine, long short-term memory, and shuffled frog leaping algorithm as an optimizer. Statistical results indicate that long short-term memory and support vector machine are the best neural networks for cooling and heating load forecast, respectively.

ENERGY (2023)

Article Chemistry, Physical

Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles

Sadia Aroob, Sonia A. C. Carabineiro, Muhammad Babar Taj, Ismat Bibi, Ahmad Raheel, Tariq Javed, Rana Yahya, Walla Alelwani, Francis Verpoort, Khanita Kamwilaisak, Saleh Al-Farraj, Mika Sillanpaa

Summary: In this study, CuO nanoparticles were synthesized by a simple, one-pot mechanochemical approach using the leaf extract of Seriphidium oliverianum as a reducing and stabilizing agent. The CuO NPs showed high potential for degrading water-soluble industrial dyes, with degradation rates of 65.231% +/- 0.242 for methyl green (MG) and 65.078% +/- 0.392 for methyl orange (MO). This bio-mechanochemically synthesized CuO NPs are promising candidates for efficient dye removal from water.

CATALYSTS (2023)

Article Chemistry, Analytical

Detection of Levofloxacin Using a Simple and Green Electrochemically Polymerized Glycine Layered Carbon Paste Electrode

Kanthappa Bhimaraya, Jamballi G. Manjunatha, Karnayana P. Moulya, Ammar M. Tighezza, Munirah D. Albaqami, Mika Sillanpaa

Summary: The electrochemically polymerized glycine layered carbon paste electrode (EPGNLCPE) was used as an easy and rapid analytical tool for the analysis of levofloxacin (LN). The EPGNLCPE sensor, compared to the bare carbon paste electrode (BCPE), showed improved surface features and activities. Under optimized conditions, the differential pulse voltammetry method using EPGNLCPE exhibited good linearity, low limit of detection, and low limit of quantification for the analysis of LN. Real-time application of the sensor showed good recovery of LN in medicinal samples.

CHEMOSENSORS (2023)

Article Horticulture

Efficiency of Using Superabsorbent Polymers in Reducing Mineral Fertilizer Rates Applied in Autumn Royal Vineyards

Mervat A. Ali, Samir G. Farag, Mika Sillanpaa, Saleh Al-Farraj, Mohamed E. A. El-Sayed

Summary: The addition of superabsorbent polymers (SAPs) to soil improves soil properties and increases plant yields. The goal of the study was to investigate the effectiveness of SAPs in reducing mineral fertilizer usage and producing high-quality grapes. The study was conducted in a private vineyard in Egypt over three seasons and found that increasing the amount of applied polymer significantly enhanced bud burst, growth parameters, nutrient content, and yield.

HORTICULTURAE (2023)

Review Engineering, Environmental

Metal-organic framework membrane for waterborne micro/nanoplastics treatment

Thuhin Kumar Dey, Jingwei Hou, Mika Sillanpaa, Biplob Kumar Pramanik

Summary: Micro/nanoplastics (MPs/NPs) are widespread and pose a significant threat to the environment. Metal-organic frameworks (MOFs)-based membranes have gained attention for their potential in removing MPs/NPs from water and wastewater. However, challenges such as re-aggregation, cross-contamination, and poor structural stability need to be addressed for the successful application of MOF membranes.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Physical

Low-cost date palm fiber activated carbon for effective and fast heavy metal adsorption from water: Characterization, equilibrium, and kinetics studies

Abir Melliti, Murat Yilmaz, Mika Sillanpaa, Bechir Hamrouni, Radek Vurm

Summary: In this study, low-cost activated carbon (AC-DPF) made from date palm fiber waste was used to remove lead and copper from water systems. AC-DPF had a large surface area and high adsorption capacity, with removal efficiencies of 92% for Pb(II) and 80% for Cu(II). The adsorption kinetics and thermodynamics of AC-DPF were investigated, and competitive and antagonistic effects were observed in the multicomponent system. Overall, AC-DPF showed great potential as a highly promising, effective, and feasible adsorbent for heavy metal removal.

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS (2023)

Article Chemistry, Analytical

Comprehensive study of the kinetics of combustion and pyrolysis of petrochemical sludge: Experimentation and application of artificial neural network

Shilpi Verma, Mamleshwar Kumar, Ramanpreet Kaur, Praveen Kumar, Mika Sillanpaa, Urska Lavrencic Stangar

Summary: This study analyzed the combustion and pyrolysis behaviors of PTA wastewater sludge and observed reaction orders, exothermic reactions, and auto gasification. The sludges were found to be promising for energy recovery due to their high calorific values. The experimental results were successfully validated using an artificial neural network model.

JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS (2023)

Article Chemistry, Physical

An Efficient Investigation and Machine Learning-Based Prediction of Decolorization of Wastewater by Using Zeolite Catalyst in Electro-Fenton Reaction

Atef El Jery, Moutaz Aldrdery, Ujwal Ramesh Shirode, Juan Carlos Orosco Gavilan, Abubakr Elkhaleefa, Mika Sillanpaa, Saad Sh. Sammen, Hussam H. Tizkam

Summary: The shortage of water resources has led to extensive research in the development of effective and affordable wastewater treatment methods. In this study, a modified catalyst was synthesized using wet impregnation and the hydrothermal technique. The catalyst showed excellent performance in a heterogeneous quasi-electro-Fenton reaction and remained stable under different operational conditions. The findings of this study clarify the potential of the heterogeneous zeolite catalyst in wastewater treatment.

CATALYSTS (2023)

Review Engineering, Civil

A systematic review on application of electrokinetics in stabilization and remediation of problematic soils

B. K. Pandey, C. Shukla, M. Sillanpaeae, S. K. Shukla

Summary: The aim of this study was to evaluate the global research trends in the application of electrokinetics in soil stabilization and remediation. A total of 1562 articles published from 1960 to 2022 were analyzed using the Scopus database. The results show that publication output has significantly increased in the last 5 years, with China, USA, Spain, and South Korea being the top contributing countries.

INNOVATIVE INFRASTRUCTURE SOLUTIONS (2023)

Article Engineering, Chemical

Amoxicillin adsorption from aqueous solution by magnetite iron nanoparticles: molecular modelling and simulation

Shabnam Ahmadi, Soumya Ghosh, Alhadji Malloum, Mika Sillanpaa, Chinenye Adaobi Igwegbe, Prosper E. Ovuoraye, Joshua O. Ighalo

Summary: Molecular modelling and simulation were used to investigate the removal of amoxicillin (AMX) from water using iron nanoparticles (Fe3O4-NPs). The optimal conditions for adsorption were determined. The results showed that AMX molecules have high chemical potential and electrophilicity index, making them reactive. The adsorption of AMX onto Fe3O4-NPs was highly efficient under optimal conditions of pH 3, dosage of 0.5 g/L, AMX concentration of 60 mg/L, and a contact time of 60 min. Langmuir isotherm and pseudo-second-order kinetics provided the best fit to the adsorption data.

INDIAN CHEMICAL ENGINEER (2023)

Article Engineering, Environmental

Hybridized microfiltration-Fenton system for the treatment of greywater

Edris Rezaei, Behrouz Jafari, Mohsen Abbasi, Seyed Abdollatif Hashemifard, Shahriar Osfouri, Mahmoud Ramazani, Nadir Dizge, Mika Sillanpaa

Summary: The purpose of this study is to reuse greywater and prevent its release into the environment. The combined method of membrane and advanced oxidation was used to reduce the COD to the standard value. Ten types of membrane samples with different concentrations of kaolin, alumina, and calcium carbonate were prepared. The results showed that the addition of calcium carbonate increased the porosity and average pore size of the membrane.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Chemistry, Physical

Tandem CQDs loaded triple metal oxide interface-reinforced built-in electric field for a wide-spectral-responsive photocatalyst

Mohammad K. Okla, M. Kalil Rahiman, Mostafa A. Abdel-Maksoud, Ibrahim A. Alaraidh, Abdulrahman A. Alatar, Saud S. Al-amri, Hamada AbdElgawad, Mika Sillanpaa, S. Sudheer Khan

Summary: In this study, an n-p-n nanohybrid material was designed and synthesized, which consisted of ultrathin-Bi2WO6, CoFe2O4 nanosheets, spherical MnWO4, and carbon quantum dots. The experimental results demonstrated that the nanohybrid material exhibited excellent visible light absorption and efficient Cefixime photodegradation.

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS (2023)

Article Engineering, Environmental

Temperature-modulated sensing characteristics of ultrafine Au nanoparticle-loaded porous ZnO nanobelts for identification and determination of BTEX

Shun-Shun Chen, Xu-Xiu Chen, Tian-Yu Yang, Li Chen, Zheng Guo, Xing-Jiu Huang

Summary: A temperature-modulated sensing strategy was proposed to identify and determine BTEX compounds. Highly effective identification of BTEX was achieved using linear discrimination and convolutional neural network analyses. Additionally, quantitative analysis of concentration was accomplished by establishing the relationship between concentration and response.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Particulate matter-induced metabolic recoding of epigenetics in macrophages drives pathogenesis of chronic obstructive pulmonary disease

Myungkyung Noh, Jeong Yeon Sim, Jisung Kim, Jee Hwan Ahn, Hye-Young Min, Jong-Uk Lee, Jong-Sook Park, Ji Yun Jeong, Jae Young Lee, Shin Yup Lee, Hyo-Jong Lee, Choon-Sik Park, Ho-Young Lee

Summary: This study reveals that chronic exposure to PM induces chronic inflammation and development of COPD by dysregulating NAD+ metabolism and subsequent SIRT1 deficiency in pulmonary macrophages. Activation of SIRT1 by resveratrol effectively mitigates PM-induced inflammation and COPD development. Targeting metabolic and epigenetic reprogramming in macrophages induced by PM is a promising strategy for COPD treatment.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Electrocatalytic degradation of nitrogenous heterocycles on confined particle electrodes derived from ZIF-67

Yu Liu, Linlin Qin, Yiming Qin, Tong Yang, Haoran Lu, Yulong Liu, Qiqi Zhang, Wenyan Liang

Summary: Co/NC/PAC electrode was prepared by compounding ZIF-67 with powder-activated carbon for the electrocatalytic treatment of nitrogen-containing heterocyclic compounds. The degradation efficiency of the four compounds reached 90.2-93.7% under optimal conditions, and the degradation order was pyridazine < pyrimidine < pyrazine < pyridine.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Yttrium speciation variability in bauxite residues of various origins, ages and storage conditions

Julien Couturier, Pierre Tamba Oulare, Blanche Collin, Claire Lallemand, Isabelle Kieffer, Julien Longerey, Perrine Chaurand, Jerome Rose, Daniel Borschneck, Bernard Angeletti, Steven Criquet, Renaud Podor, Hamed Pourkhorsandi, Guilhem Arrachart, Clement Levard

Summary: This study analyzes the properties of bauxite residue samples and explores the influence of bauxite ore origin, storage conditions, and storage time. The results show that the speciation of yttrium is related to the origin of bauxite ore, while no significant variation was observed with storage conditions or aging of the residues.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Trophic transfer and their impact of microplastics on estuarine food chain model

Sakthinarenderan Saikumar, Ravi Mani, Mirunalini Ganesan, Inbakandan Dhinakarasamy, Thavamani Palanisami, Dharani Gopal

Summary: Microplastic contamination in marine ecosystems poses a growing concern due to its trophic transfer and negative effects on marine organisms. This study investigates the transfer and impacts of polystyrene microplastics in an estuarine food chain. The results show that microplastics can be transferred through the food chain, although the transfer rates are low. The exposed organisms exhibit stress responses, suggesting the potential risk of microplastics reaching humans through the food chain.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Review Engineering, Environmental

Antibiotic resistance genes and heavy metals in landfill: A review

Yan-Jiao Li, Ying Yuan, Wen-Bing Tan, Bei-Dou Xi, Hui Wang, Kun-Long Hui, Jia-Bao Chen, Yi-Fan Zhang, Lian-Feng Wang, Ren-Fei Li

Summary: This review investigated and analyzed the distribution, composition, and abundance of heavy metals and antibiotic resistance genes (ARGs) in landfill. The results showed that heavy metals have lasting effects on ARGs, and complexes of heavy metals and organic matter are common in landfill. This study provides a new basis to better understand the horizontal gene transfer (HGT) of ARGs in landfill.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

The effect of synthesis conditions on the in situ grown MIL-100(Fe)-chitosan beads: Interplay between structural properties and arsenic adsorption

Jessy Joseph, Ari Vaisanen, Ajay B. Patil, Manu Lahtinen

Summary: Efficient and environmentally friendly porous hybrid adsorbent beads have been developed for the removal of arsenic from drinking water. The structural tuning of the adsorbents has been shown to have a significant impact on their adsorption performance, with high crystallinity leading to increased adsorption capacity and selectivity towards As5+.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Phthalate metabolites in breast milk from mothers in Southern China: Occurrence, temporal trends, daily intake, and risk assessment

Yangyang Liu, Minhua Xiao, Kaiqin Huang, Juntao Cui, Hongli Liu, Yingxin Yu, Shengtao Ma, Xihong Liu, Meiqing Lin

Summary: This study measured the levels of phthalate metabolites in breast milk collected from mothers in southern China. The results showed that phthalates are still prevalent in the region, and breastfeeding contributes to phthalate intake in infants. However, the levels detected do not pose significant health risks to infants based on dietary exposure. The increasing exposure to certain phthalates calls for further research into their sources and potential risks.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Depth significantly affects plastisphere microbial evenness, assembly and co-occurrence pattern but not richness and composition

Zhiqiang Wu, Jianxing Sun, Liting Xu, Hongbo Zhou, Haina Cheng, Zhu Chen, Yuguang Wang, Jichao Yang

Summary: Ocean depth affects microbial diversity, composition, and co-occurrence patterns of microplastic microbial communities. Deterministic processes dominate the assembly of mesopelagic plastisphere microbial communities, while stochastic processes shape the assembly of bathypelagic microbial communities. The relationships between microorganisms in the mesopelagic layer are more complex and stable, with Proteobacteria and Actinobacteriota playing important roles.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Abatement of antibiotics and resistance genes during catalytic ozonation enhanced sludge dewatering process: Synchronized in volume and hazardousness reduction

Tingting Xiao, Renjie Chen, Chen Cai, Shijie Yuan, Xiaohu Dai, Bin Dong, Zuxin Xu

Summary: Based on the efficiency of catalytic ozonation techniques in enhancing sludge dewaterability, this study investigated its effectiveness in simultaneous reduction of antibiotics and antibiotic resistance genes. The results showed that catalytic ozonation conditioning changed the distribution of antibiotics and achieved high degradation rates. It also significantly reduced the abundance of ARGs, inhibited horizontal gene transfer, and decreased the signal transduction of typical ARGs host bacteria.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Unlocking the potential of ferrate(VI) in water treatment: Toward one-step multifunctional solutions

Yang Deng, Xiaohong Guan

Summary: This article discusses two different development approaches for ferrate(VI) technology in water treatment, arguing that process integration is a promising method that can drive technological innovation and revolution in water treatment, achieving higher treatment efficiency, reduced costs and energy consumption, and a smaller physical footprint.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Floating Catalytic Foam with prominent heat-induced convection for the effective photocatalytic removal of antibiotics

Zhe Zhang, Lu Zhang, Zhihao Huang, Yuxin Xu, Qingqing Zhao, Hongju Wang, Meiqing Shi, Xiangnan Li, Kai Jiang, Dapeng Wu

Summary: In this study, a floating catalytic foam was designed and prepared to enhance the mass transfer in immobilized photocatalysts for wastewater treatment. The floating catalytic foam could float on the water surface and establish a temperature gradient, effectively promoting the diffusion and adsorption of target molecules during the photocatalytic process.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Mechanism and synergistic effect of sulfadiazine (SDZ) and cadmium toxicity in spinach (Spinacia oleracea L.) and its alleviation through zinc fortification

Muhammad Nafees, Adiba Khan Sehrish, Sarah Owdah Alomrani, Linlin Qiu, Aasim Saeed, Shoaib Ahmad, Shafaqat Ali, Hongyan Guo

Summary: The accumulation of cadmium and antibiotics in edible plants and fertile soil is a worldwide problem. This study investigated the potential of zinc oxide nanoparticles to alleviate the toxicity of both cadmium and antibiotics and promote spinach growth.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Aminoalkyl organosilicon with dual chemical sites for SO2 absorption and analysis of site-specific absorption entropy and enthalpy

Lurui Wan, Kai Wang, Yuan Chen, Zhiyong Xu, Wenbo Zhao

Summary: In this study, a low viscosity and high thermal stability SO2 absorbent with dual interacting sites was successfully synthesized. The absorbent showed the highest absorption enthalpy change and entropy change values among reported SO2 absorbents, and exhibited lower viscosity and comparable thermal stability to ILs.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Improvement of Fe(III)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism

Zhengwei Zhou, Guojie Ye, Yang Zong, Zhenyu Zhao, Deli Wu

Summary: This study utilized Mo powder and STPP to enhance the performance of the sodium percarbonate system in pollutant degradation. The presence of Mo and STPP resulted in a higher degradation rate of the model pollutant SMX, with low oxidant consumption. The system generated multiple active species through a series of chain reactions at different pH values, exhibiting excellent performance towards electron-rich pollutants. Furthermore, Mo demonstrated excellent stability and reusability.

JOURNAL OF HAZARDOUS MATERIALS (2024)