4.3 Article

The role of wind on the detachment of low salinity water in the Changjiang Estuary in summer

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 117, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2012JC008121

Keywords

-

Categories

Funding

  1. National Program on Key Basic Research Project [2011CB409803]
  2. Public science and technology research funds projects of ocean [201205015]
  3. Chinese offshore Investigation and Assessment Program [908-01-ST04]
  4. Natural Science Project of Zhejiang Province [Y5110014]
  5. scientific research fund of the Second Institute of Oceanography, SOA [JG1010, JT1105, JT1005]

Ask authors/readers for more resources

Two detachment processes of low salinity water (LSW) in the Changjiang Estuary in July 2006, and the role of wind on detaching the LSW in particular, are explored with a three-dimensional numerical model. The real-case simulation and the sensitivity experiments results show that wind plays a crucial role in the detachment events and is highlighted in three aspects. First, wind is the most important dynamic factor in the two detachment processes of the LSW. Wind mixing, wind-driven northward current and wind-induced upwelling are three driving forces on detaching the LSW, which increase the salinity in the upper layer in the detachment region along the 30 m isobath and separate the offshore LSW from the nearshore main body of LSW. The diagnostic analysis further indicates that the increase of salinity in the detachment region is mainly due to northward current which transports high salinity water from the south. Second, a critical wind speed, namely a southeasterly wind above 8.0 m/s, is found to be related to the timing of the detachment events. A sensitivity experiment further confirms this critical wind speed and no detachment occurs when the wind speed is below 8.0 m/s. Third, the southwesterly wind plays a key role in the magnitude of the spatial size of the detached LSW. Before the detachment occurs, a persistent southwesterly wind induces northeastward expansion of the LSW and consequently forms larger LSW offshore after detachment, which is verified by another sensitivity experiment with modified wind direction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available