4.3 Article

Secondary crater fields from 24 large primary craters on Mars: Insights into nearby secondary crater production

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
Volume 116, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011JE003820

Keywords

-

Funding

  1. NASA [NNX10AL65G]
  2. NASA [NNX10AL65G, 130367] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Crater statistics are used across a wide variety of applications on planetary surfaces, one of the most notable being estimating relative and absolute ages of those surfaces. This requires an assumed cratering rate over time and that craters be randomly distributed. Secondary craters - craters that form from the ejecta of an impact event - belie this assumption by creating greater crater density in a local area at a single time, significantly affecting crater statistics. There has been substantial debate over the relative importance of secondary craters, and our findings in this Mars study indicate that these events can be very significant and cannot be ignored when age-dating surfaces. We have analyzed secondary crater fields found close to 24 primary craters on Mars. Among other findings such as terrain control over secondary crater field characteristics, we conclude that a single large impact event (> 100 km) can significantly affect crater statistics at the similar to 1-5-km-diameter level over a non-trivial fraction of a planetary surface (minimum secondary crater diameters examined were similar to 0.9 km; the minimum primary crater diameter was similar to 20 km). We also suggest a potential way to avoid significant contamination by the majority of secondary craters that occur close to the primary impact event without the need to manually classify every crater as primary or secondary. Our findings are specific to Mars, but further work may show the patterns are applicable to other solid bodies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available