4.3 Article

Jarosite in a Pleistocene East African saline-alkaline paleolacustrine deposit: Implications for Mars aqueous geochemistry

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
Volume 116, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2010JE003680

Keywords

-

Funding

  1. UW Milwaukee Research Growth Initiative
  2. American Chemical Society
  3. L.S.B. Leakey Foundation
  4. National Science Foundation [BCS-0852292]

Ask authors/readers for more resources

Jarosite occurs within altered tephra from the saline-alkaline paleolake deposits of Pliocene-Pleistocene Olduvai Gorge, Tanzania. Zeolites (mainly phillipsite), authigenic K-feldspar, and Mg/Fe-smectites dominate the mineral assemblage, indicating saline-alkaline diagenetic conditions (pH > 9). As jarosite is ordinarily an indicator of acidic conditions on Earth and Mars, its association with such undisputed high-pH indicators is unexpected. Of 55 altered tephra samples collected from the paleolake basin and margin deposits, eleven contained jarosite detectable by X-ray Diffraction (XRD) (> 0.15%). Mossbauer spectroscopy, Fourier Transform Infrared Reflectance (FTIR), Electron Probe Microanalysis (EPMA), X-ray Fluorescence (XRF), and Scanning Electron Microscopy (SEM) analyses confirm the presence and nature of the jarosite. This paper documents this occurrence and presents mechanisms that could produce this unusual and contradictory mineral assemblage. We favor a mechanism by which jarosite formed recently, perhaps as modern ground and meteoric water interacted with and oxidized paleolacustrine pyrite, providing local and temporary acidic conditions. However, local groundwater (at modern springs) has a pH > 9. In recent studies of Mars, the presence of jarosite or other Fe or Mg sulfates is often used to indicate dominantly acidic conditions. Regardless, the current study shows that jarosite can form in sediments dominated by alkaline minerals and solutions. Its coexistence with Mg/Fe smectites in particular makes it relevant to recent observations of Martian paleolakes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available