4.3 Article

Tidal asymmetry in estuaries with mixed semidiurnal/diurnal tides

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 115, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009JC005864

Keywords

-

Categories

Funding

  1. USGS/WHOI

Ask authors/readers for more resources

Tidal asymmetry in estuaries with mixed, mainly semidiurnal tides arises from both the interaction of principal tides and the higher harmonics generated by distortions within the estuary. The duration asymmetry in rise and fall of water level caused by principal tides on the west coast of the continental United States is ebb-dominant, and so the tide entering estuaries is also ebb-dominant, prior to any internal distortions within the estuary. The interaction of higher harmonics with principal constituents either augments or cancels the duration asymmetry in the principal tides. In estuaries where tidal elevation and velocity phase are near quadrature (90 degrees out of phase), the duration asymmetry in tidal elevation leads to asymmetries in tidal current magnitude. Asymmetry can be conveniently quantified in terms of the sample skewness, gamma(1), the normalized third sample moment about the mean. An analytic approximation to the skewness shows that traditional metrics of asymmetry, namely the ratio of constituent amplitudes and the relative constituent phase difference, arise from calculating the third sample moment. Observations from three California estuaries of different morphologies are presented as an illustration of how skewness can be used to quantify asymmetry in real systems. As in semidiurnal systems, morphology is a good predictor of whether higher harmonics engender ebb-dominance or flood-dominance, however asymmetry imposed by principal tides at the mouth must first be overcome and so there is a spatial evolution in the total asymmetry. Quantifying observations via skewness should be considered in addition to traditional metrics in estuaries with mixed tides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available