4.4 Article

Characterization of the effect of heat on agent strains of the transmissible spongiform encephalopathies

Journal

JOURNAL OF GENERAL VIROLOGY
Volume 92, Issue -, Pages 1738-1748

Publisher

MICROBIOLOGY SOC
DOI: 10.1099/vir.0.030452-0

Keywords

-

Funding

  1. UK Department of Health
  2. Department of the Environment and Rural Affairs

Ask authors/readers for more resources

The causal agents of the transmissible spongiform encephalopathy (TSE) diseases, sometimes called prion diseases, are characterized by high resistance to inactivation with heat. Results from thermal inactivation experiments on nine TSE strains, seven passaged in two PrP genotypes, showed differences in sensitivity to heat inactivation ranging over 17 degrees C. In addition, the rate of inactivation with increasing temperature varied between TSE models. In some cases passage in an alternative PrP genotype had little effect on the resulting inactivation properties, but for others the infectious agent was inactivated at lower temperatures. No strain with higher thermostability properties was selected. The effect of mixing two TSE strains, to see whether their properties were affected through interaction with each other, was also examined. The results showed that both strains behaved as expected from the behaviour of the unmixed controls, and that the strain responsible for inducing TSE disease could be identified. There was no evidence of a direct effect on intrinsic strain properties. Overall, the results illustrate the diversity in properties of TSE strains. They require intrinsic molecular properties of TSE agents to accommodate high resistance to inactivation and a mechanism, independent of the host, to directly encode these differences. These findings are more readily reconciled with models of TSE agents with two separate components, one of which is independent of the host and comprises a TSE-specific nucleic acid, than with models based solely on conformational changes to a host protein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available