4.7 Article

Shape of optimal active flagella

Journal

JOURNAL OF FLUID MECHANICS
Volume 730, Issue -, Pages -

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2013.370

Keywords

biological fluid dynamics; micro-organism dynamics; swimming/flying

Funding

  1. European Union [PIOF-GA-2009-252542]
  2. US National Science Foundation [CBET-0746285]

Ask authors/readers for more resources

Many eukaryotic cells use the active waving motion of flexible flagella to self-propel in viscous fluids. However, the criterion governing the selection of particular flagellar waveforms among all possible shapes has proved elusive so far. To address this question, we derive computationally the optimal shape of an internally forced periodic planar flagellum deforming as a travelling wave. The optimum is here defined as the shape leading to a given swimming speed with minimum energetic cost. To calculate the energetic cost, we consider the irreversible internal power expended by the molecular motors forcing the flagellum, only a portion of which is dissipated in the fluid. This optimization approach allows us to derive a family of shapes depending on a single dimensionless number quantifying the relative importance of elastic to viscous effects: the Sperm number. The computed optimal shapes are found to agree with the waveforms observed on spermatozoon of marine organisms, thus suggesting that these eukaryotic flagella might have evolved to be mechanically optimal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available