4.5 Article

jShaw1, a low-threshold, fast-activating Kv3 from the hydrozoan jellyfish Polyorchis penicillatus

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 214, Issue 18, Pages 3124-3137

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.057000

Keywords

comparative analysis; potassium channel gating; electrophysiology

Categories

Funding

  1. Canadian Institutes for Health Research
  2. NSERC PGS-D

Ask authors/readers for more resources

Voltage-gated potassium (K-v) channels work in concert with other ion channels to determine the frequency and duration of action potentials in excitable cells. Little is known about K(v)3 channels from invertebrates, but those that have been characterized generally display slow kinetics. Here, we report the cloning and characterization of jShaw1, the first K(v)3 isolated from a cnidarian, the jellyfish Polyorchis penicillatus, in comparison with mouse K(v)3.1 and K(v)3.2. Using a two-electrode voltage clamp on Xenopus laevis oocytes expressing the channels, we compared steady-state and kinetic properties of macroscopic currents. jShaw1 is fast activating, and opens at potentials approximately 40mV more hyperpolarized than the mouse K(v)3 channels. There is an inverse relationship between the number of positive charges on the voltage sensor and the half-activation voltage of the channel, contrary to what would be expected with the simplest model of voltage sensitivity. jShaw1 has kinetic characteristics that are substantially different from the mammalian K(v)3 channels, including a much lower sensitivity of early activation rates to incremental voltage changes, and a much faster voltage-dependent transition in the last stages of opening. jShaw1 opening kinetics were affected little by pre-depolarization voltage, in contrast to both mouse channels. Similar to the mouse channels, jShaw1 was half-blocked by 0.7 mmol l(-1) tetraethyl ammonium and 5 mmol l(-1) 4-aminopyridine. Comparison of sequence and functional properties of jShaw1 with the mouse and other reported K(v)3 channels helps to illuminate the general relationship between amino acid sequence and electrophysiological activity in this channel family.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available