4.2 Article

Degradation of polycyclic aromatic hydrocarbons by Pseudomonas sp JM2 isolated from active sewage sludge of chemical plant

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 24, Issue 12, Pages 2141-2148

Publisher

SCIENCE PRESS
DOI: 10.1016/S1001-0742(11)61064-4

Keywords

polycyclic aromatic hydrocarbons; Pseudomonas sp.; biodegradation; formate; salicylate

Funding

  1. National High Technology Research and Development Program (863) of China [2004AA649070]

Ask authors/readers for more resources

It is important to screen strains that can decompose polycyclic aromatic hydrocarbons (PAHs) completely and rapidly with good adaptability for bioremediation in a local area. A bacterial strain JM2, which uses phenanthrene as its sole carbon source, was isolated from the active sewage sludge from a chemical plant in Jilin, China and identified as Pseudomonas based on 16S rDNA gene sequence analysis. Although the optimal growth conditions were determined to be pH 6.0 and 37 degrees C, JM2 showed a broad pH and temperature profile. At pH 4.5 and 9.3, JM2 could degrade more than 40% of fluorene and phenanthrene (50 mg/L each) within 4 days. In addition, when the temperature was as low as 4 degrees C, JM2 could degrade up to 24% fluorene and 12% phenanthrene. This showed the potential for JM2 to be applied in bioremediation over winter or in cold regions. Moreover, a nutrient augmentation study showed that adding formate into media could promote PAH degradation, while the supplement of salicylate had an inhibitive effect. Furthermore, in a metabolic pathway study, salicylate, phthalic acid, and 9-fluorenone were detected during the degradation of fluorene or phenanthrene. In conclusion, Pseudomonas sp. JM2 is a high performance strain in the degradation of fluorene and phenanthrene under extreme pH and temperature conditions. It might be useful in the bioremediation of PAHs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available