4.4 Article

Damage/Deterioration Detection for Steel Structures Using Distributed Fiber Optic Strain Sensors

Journal

JOURNAL OF ENGINEERING MECHANICS
Volume 140, Issue 12, Pages -

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)EM.1943-7889.0000812

Keywords

Strain gauges; Fiber optics; Monitoring; Tests; Steel; Instrumentation; Deterioration

Funding

  1. Natural Science and Engineering Research Council of Canada
  2. Canada Foundation for Innovation
  3. Ontario Research Fund

Ask authors/readers for more resources

Distributed fiber optic sensors have the potential to be used to detect three critical deterioration mechanisms in steel structures: (1) fatigue cracking, (2) localized damage or deterioration, and (3) distributed damage or deterioration, such as corrosion. This study investigated the strain and spatial resolution of distributed fiber optic sensors and explored the potential benefits and challenges of using distributed fiber optic strain sensors for damage/deterioration detection. The experimental program consisted of a series of axial tension tests performed on steel plate specimens with three types of simulated damage/deterioration: cracking, local cross section reduction, and distributed cross section reduction. The results indicate that similar accuracy to strain gauges can be achieved and distributed fiber optic strain sensors can provide much more detailed information about specimen behavior. The results of a finite-element analysis for each specimen were compared with the experimental measurements. There was good correlation between the two if the boundary conditions were modeled properly. However, care must be taken when selecting the sensing fiber to be used and when interpreting the results. (C) 2014 American Society of Civil Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available