4.5 Article

In Vitro Osteogenic/Dentinogenic Potential of an Experimental Calcium Aluminosilicate Cement

Journal

JOURNAL OF ENDODONTICS
Volume 39, Issue 9, Pages 1161-1166

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.joen.2013.04.005

Keywords

Alizarin red S staining; alkaline phosphatase; calcium aluminosilicate cement; MDPC-23 cells; quantitative reverse transcription polymerase chain reaction

Funding

  1. National Institute of Dental and Craniofacial Research [R44 DE20204-02]

Ask authors/readers for more resources

Introduction: Calcium aluminosilicate cements are fast-setting, acid-resistant, bioactive cements that may be used as root-repair materials. This study examined the osteogenic/dentinogenic potential of an experimental calcium aluminosilicate cement (Quick-Set) by using a murine odontoblast-like cell model. Methods: Quick-Set and white ProRoot MTA (WMTA) were mixed with the proprietary gel or deionized water, allowed to set completely in 100% relative humidity, and aged in complete growth medium for 2 weeks until rendered non-cytotoxic. Similarly aged Teflon disks were used as negative control. The MDPC-23 cell line was used for evaluating changes in mRNA expressions of genes associated with osteogenic/dentinogenic differentiation and mineralization (quantitative reverse transcription polymerase chain reaction), alkaline phosphatase enzyme production, and extracellular matrix mineralization (alizarin red S staining). Results: After MDPC-23 cells were incubated with the materials in osteogenic differentiation medium for 1 week, both cements showed up-regulation in ALP and DSPP expression. Fold increases in these 2 genes were not significantly different between Quick-Set and WMTA. Both cements showed no statistically significant up-regulation/down-regulation in RUNX2, OCN, BSP, and DMP1 gene expression compared with Teflon. Alkaline phosphatase activity of cells cultured on Quick-Set and WMTA were not significantly different at 1 week or 2 weeks but were significantly higher (P < .05) than Teflon in both weeks. Both cements showed significantly higher calcium deposition compared with Teflon after 3 weeks of incubation in mineralizing medium (P < .001). Differences between Quick-Set and WMTA were not statistically significant. Conclusions: The experimental calcium aluminosilicate cement exhibits similar osteogenic/dentinogenic properties to WMTA and may be a potential substitute for commercially available tricalcium silicate cements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available