4.5 Article

The Role of Elastic and Plastic Anisotropy of Sn in Recrystallization and Damage Evolution During Thermal Cycling in SAC305 Solder Joints

Journal

JOURNAL OF ELECTRONIC MATERIALS
Volume 41, Issue 2, Pages 283-301

Publisher

SPRINGER
DOI: 10.1007/s11664-011-1811-x

Keywords

Sn; Microstructure; Anisotropy; Thermal expansion; Thermal cycling; Slip systems; Damage; Recrystallization

Funding

  1. NSF-GOALI [1006656]
  2. Cisco Systems Inc., San Jose, CA
  3. US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38]
  4. Division Of Materials Research
  5. Direct For Mathematical & Physical Scien [1006656] Funding Source: National Science Foundation

Ask authors/readers for more resources

Because failures in lead-free solder joints occur at locations other than the most highly shear-strained regions, reliability prediction is challenging. To gain physical understanding of this phenomenon, physically based understanding of how elastic and plastic deformation anisotropy affect microstructural evolution during thermomechanical cycling is necessary. Upon solidification, SAC305 (Sn-3.0Ag-0.5Cu) solder joints are usually single or tricrystals. The evolution of microstructures and properties is characterized statistically using optical and orientation imaging microscopy. In situ synchrotron x-ray measurements during thermal cycling are used to examine how crystal orientation and thermal cycling history change strain history. Extensive characterization of a low-stress plastic ball grid array (PBGA) package design at different stages of cycling history is compared with preliminary experiments using higher-stress package designs. With time and thermal history, microstructural evolution occurs mostly from continuous recrystallization and particle coarsening that is unique to each joint, because of the specific interaction between local thermal and displacement boundary conditions and the strong anisotropic elastic, plastic, expansion, and diffusional properties of Sn crystals. The rate of development of recrystallized microstructures is a strong function of strain and aging. Cracks form at recrystallized (random) boundaries, and then percolate through recrystallized regions. Complications arising from electromigration and corrosion are also considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available