4.7 Article

The Specific Role of FAM20C in Dentinogenesis

Journal

JOURNAL OF DENTAL RESEARCH
Volume 94, Issue 2, Pages 330-336

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034514563334

Keywords

FGF23; hypophosphatemia; neural crest cells; dentin; enamel; bone

Funding

  1. National Institutes of Health (NIH) [DE022549, DE23873-01]

Ask authors/readers for more resources

FAM20C is an evolutionarily reserved molecule highly expressed in mineralized tissues. Previously we demonstrated that Sox2-Cre;Fam20C(fl/fl) mice, in which Fam20C was ubiquitously inactivated, had dentin and enamel defects as well as hypophosphatemic rickets. We also showed that K14-Cre;Fam20C(fl/fl) mice, in which Fam20C was specifically inactivated in the epithelium, had enamel defects but lacked hypophosphatemia and defects in the bone and dentin. These results indicated that the enamel defects in the Sox2-Cre;Fam20C(fl/fl) mice were independent of dentin defects and hypophosphatemia. To determine if the dentin defects in the Sox2-Cre;Fam20C(fl/fl) mice were associated with the enamel defects and hypophosphatemia, we crossed Fam20C(fl/fl) mice with Wnt1-Cre and Osr2-Cre transgenic mice to inactivate Fam20C in the craniofacial mesenchymal cells that form dentin and alveolar bone. The resulting Wnt1-Cre;Fam20C(fl/fl) and Osr2-Cre;Fam20C(fl/fl) mice showed remarkable dentin and alveolar bone defects, while their enamel did not show apparent defects. The serum FGF23 levels in these mice were higher than normal but lower than those in the Sox2-Cre;Fam20C(fl/fl) mice; they developed a mild type of hypophosphatemia that did not cause major defects in long bones. These results indicate that the dentin defects in the Sox2-Cre;Fam20C(fl/fl) mice were independent of the enamel defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available