4.7 Article

Expression of nisin genes in cheese-A quantitative real-time polymerase chain reaction approach

Journal

JOURNAL OF DAIRY SCIENCE
Volume 94, Issue 1, Pages 77-85

Publisher

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2010-3677

Keywords

nisin; gene expression; real-time reverse transcription-polymerase chain reaction; cheese

Funding

  1. Slovenian Research Agency [1000-08-310172]
  2. Slovene Human Resources and Scholarship Fund [2009/11501-11]

Ask authors/readers for more resources

The role of bacteriocins in different environments has not been thoroughly explained, mainly because of the difficulties related to the detection of their production. Nisin, an antimicrobial peptide produced by Lactococcus lactis has a long history of safe use in food products and has been studied from many aspects of genetics, biosynthesis, immunity, regulation, and mode of action. Still, some aspects concerning the dynamics of nisin gene expression remain unknown, especially in complex media like cheese. The main objective of the present study was to quantify in a cheese-like medium the expression of nisin genes in L. lactis M78, a well-characterized nisin A producer isolated from raw milk. The expression of all 11 genes involved in nisin biosynthesis was evaluated during cheese production by real-time reverse transcription-PCR. Total RNA was extracted from cheeses using a direct extraction method without prior separation of microbial cells. The M78 strain grew well in experimental cheeses, producing detectable amounts of nisin after 4 h of fermentation. The presence of nisin as an activator modified both the expression of nisin genes and the accumulation of active nisin. Four groups could be distinguished based on gene expression as a function of time: nisA, nisFEC, nisRK and nisBTCIP. Based on nisin-producing strain growth, nisin activity, function of nisin genes, and their location, correlations were established that contribute to the explanation of regulation of nisin biosynthesis and immunity. This study is the first in which the evolution of bacteriocin gene transcripts has been quantified rigorously in a, cheese-like medium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available