4.4 Article

The characteristics of heterogeneous nucleation on concave surfaces and implications for directed nucleation or surface activity by surface nanopatterning

Journal

JOURNAL OF CRYSTAL GROWTH
Volume 355, Issue 1, Pages 73-77

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jcrysgro.2012.06.031

Keywords

Nucleation; Surfaces; Surface structure; Surface processes; Roughening

Funding

  1. UK EPSRC [EP/E00119X/1]

Ask authors/readers for more resources

The characteristics of heterogeneous nucleation on concave spherical surfaces were analysed using a novel analytical approach and compared with nucleation on both convex and planar surfaces. The complex expressions of partial derivative Delta G/partial derivative r (Delta G: free energy change and r: embryo radius) for nucleation on concave spherical surfaces can be reduced to the simple form for nucleation on planar surfaces by introducing an appropriate pseudo-contact angle, providing a new fundamental link. The advantages of heterogeneous nucleation on a concave spherical surface of radius R over a planar surface occur primarily when 2R < 10r* (r*: nucleus radius) and diminish rapidly when 2R > 10r*. This is similar to nucleation on convex spherical surfaces, where the disadvantages of nucleation over a planar surface occur primarily when 2R < 10r* and diminish rapidly when 2R > 10r*. The substrate size 10r* thus provides an approximate borderline that distinguishes between curved and planar surfaces for nucleation. The advantages or disadvantages of nucleation over a planar surface are most outstanding when the concave (advantageous) or convex (disadvantageous) surface shows a specific contact angle with the nucleus. The nanoscale nature of the threshold size 10r* presents a clear fundamental support to surface nanopatterning for directed nucleation. A minimum depth is required for a nanoscale crater to be a favourable nucleation site. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Materials Science, Multidisciplinary

Laser powder bed fusion additive manufacturing (LPBF-AM): the influence of design features and LPBF variables on surface topography and effect on fatigue properties

Joe Elambasseril, Jason Rogers, Chris Wallbrink, David Munk, Martin Leary, M. Qian

Summary: The design freedom offered by additive manufacturing (AM) enables the fabrication of components with internal surfaces that are challenging to access post-manufacture. This is of concern, as the surface condition can markedly deteriorate fatigue performance. It is therefore desirable to consider deploying AM parts with no or minimal surface processing for targeted applications.

CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES (2023)

Article Automation & Control Systems

A virtual stylus method for non-destructive roughness profile measurement of additive manufactured lattice structures

David Downing, Jason Rogers, Rance Tino, Joe Elambasseril, Chris Wallbrink, Ma Qian, Milan Brandt, Martin Leary

Summary: Surface roughness of complex additive manufactured lattice structures is difficult to evaluate with traditional methods. Computed tomography (CT) provides qualitative insight but does not directly yield roughness profile data. This research proposes a hybrid approach that uses mathematical reconstruction and interpretation of CT data to quantify roughness profile data for lattice structures. The method is verified and found to be minimally influenced by CT reconstruction thresholding, providing certainty for its industrial application. This method accurately characterizes the surface roughness and supports subsequent certification analysis.

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY (2023)

Article Nanoscience & Nanotechnology

Electron beam additively manufactured Ti-1Al-8V-5Fe alloy: In-situ precipitation hardening, tensile properties and fracture characteristics

Q. Zhou, X. Z. Zhang, H. P. Tang, M. Qian

Summary: Ti-1Al-8V-5Fe alloy was fabricated using electron beam powder bed fusion. No Fe-stabilized beta-flecks were observed. In-situ precipitation hardening occurred in columnar prior-beta grains. Nanoscale alpha-lath precipitates exhibited noticeable deformation while microscale alpha-laths became a major source of microcracks, which should be avoided. The as-fabricated Ti-1Al-8V-5Fe alloy showed significant tensile properties.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2023)

Article Multidisciplinary Sciences

Strong and ductile titanium-oxygen-iron alloys by additive manufacturing

Tingting Song, Zibin Chen, Xiangyuan Cui, Shenglu Lu, Hansheng Chen, Hao Wang, Tony Dong, Bailiang Qin, Kang Cheung Chan, Milan Brandt, Xiaozhou Liao, Simon P. P. Ringer, Ma Qian

Summary: This study demonstrates a series of titanium-oxygen-iron compositions with outstanding tensile properties, achieved through alloy design and additive manufacturing. These alloys, strengthened by the abundant elements of oxygen and iron, offer potential for diverse applications and the industrial-scale use of waste sponge titanium. Additionally, they have significant economic and environmental potential for reducing the carbon footprint of energy-intensive sponge titanium production.

NATURE (2023)

Review Materials Science, Multidisciplinary

Heat treatment for metal additive manufacturing

Majid Laleh, Esmaeil Sadeghi, Reynier Revilla, Qi Chao, Nima Haghdadi, Anthony E. Hughes, Wei Xu, Iris De Graeve, Ma Qian, Ian Gibson, Mike Y. Tan

Summary: Metal additive manufacturing (AM) is a process of making 3D metal parts layer by layer through the interaction between a heating source and feeding material from a digital design model. Post-AM heat treatment is needed to modify microstructure and alleviate residual stresses for achieving comparable or superior properties to conventionally manufactured counterparts. This review discusses the influence of heat treatment on microstructure, mechanical properties, and corrosion behavior of major categories of AM metals, highlighting the significant differences between AM metals and their conventionally manufactured counterparts.

PROGRESS IN MATERIALS SCIENCE (2023)

Article Nanoscience & Nanotechnology

Phase transformation induced twinning in commercially pure titanium: An in-situ study

Siyu Lu, Shenglu Lu, Biao Chen, Ma Qian, Qiuming Wei, Katsuyoshi Kondoh, Jianghua Shen

Summary: In this study, in-situ high temperature electron back-scatter diffraction (HT-EBSD) was used to investigate the phase transformation in Grade 1 commercially pure titanium (CP Ti). The results showed that the transformation from alpha-Ti to beta-Ti followed the Burgers orientation relationship (BOR), while the transformation from beta-Ti to alpha-Ti during continuous cooling led to the formation of Type 2 alpha-variants that defied the BOR. This phenomenon, not reported before for CP Ti, was attributed to the fast cooling process and the lattice mismatch between the two phases.

SCRIPTA MATERIALIA (2023)

Article Nanoscience & Nanotechnology

Understanding the superior mechanical properties of hollow-strut metal lattice materials

H. Z. Zhong, T. Song, C. W. Li, R. Das, J. F. Gu, M. Qian

Summary: Intricate hollow-strut metal lattice materials, enabled by additive manufacturing, exhibit superior strength and stiffness compared to their solid-strut counterparts of the same density. Analyzed using various models, it is revealed that the hollow-strut lattice structures provide higher resistance to bending, resulting in increased mechanical properties. These materials offer lightweight design options with improved performance at the same or lower density than solid-strut metal lattices.

SCRIPTA MATERIALIA (2023)

Article Engineering, Manufacturing

Ti-6Al-4V hollow-strut lattice materials by laser powder bed fusion

J. Noronha, J. Rogers, M. Leary, E. Kyriakou, S. B. Inverarity, R. Das, M. Brandt, M. Qian

Summary: In this study, hollow-strut metal lattices were successfully fabricated using laser powder bed fusion (LPBF) additive manufacturing (AM). It was found that both face-centered cubic (FCC) and FCC with Z-struts (FCCZ) Ti-6Al-4V lattice topologies exhibited mechanical properties close to solid-strut metal lattices. Moreover, the fine prior-beta grains in the Ti-6Al-4V hollow-strut thin walls contributed positively to the superior mechanical properties.

ADDITIVE MANUFACTURING (2023)

Article Nanoscience & Nanotechnology

Node-reinforced hollow-strut metal lattice materials for higher strength

J. Noronha, J. Dash, M. Leary, D. Downing, E. Kyriakou, M. Brandt, M. Qian

Summary: This study presents a design strategy to improve the strength of hollow-strut metal lattices by applying nodal reinforcement. The proposed designs significantly increased the yield strength and elastic modulus of Ti-6Al-4V cubic lattices, while still maintaining a modest increase in density. Compared to solid-strut Ti-6Al-4V cubic lattices, the reinforced lattices exhibited higher peak stress and exceeded the upper limits of the Gibson-Ashby model for cellular metallic materials.

SCRIPTA MATERIALIA (2023)

Article Chemistry, Physical

Excellent tensile yield strength with ultrafine grain and tailored microstructure in plastically deformed Ti-Re alloys

Abdollah Bahador, Astuty Amrin, Shota Kariya, Ammarueda Issariyapat, Ozkan Gokcekaya, Guohua Zhao, Junko Umeda, Yafeng Yang, Ma Qian, Katsuyoshi Kondoh

Summary: This research investigates the effect of adding rhenium (Re) on the microstructure and strengthening mechanisms in titanium alloys. The results demonstrate that Re addition can significantly enhance the strength and ductility of titanium alloys, providing valuable insights for the development of high-performance structural materials.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Materials Science, Multidisciplinary

Melt pool dynamics on different substrate materials in high-speed laser directed energy deposition process

Zefeng Wu, Patrick O'Toole, Christian Hagenlocher, Ma Qian, Milan Brandt, Jarrod Watts

Summary: This study used a specialized welding camera to observe the interactions between the laser, powder stream, and substrate surface in HSL-DED. The observations revealed a physical separation between the laser spot and the melt pool boundary, referred to as melt pool lag. The chemical compositions and thermophysical properties of different substrates significantly impact the melt pool dynamics during high-speed laser-material interactions.

JOURNAL OF LASER APPLICATIONS (2023)

Article Nanoscience & Nanotechnology

Laser directed energy deposition of Ti-1Al-8V-5Fe alloy: From zero to significant tensile plasticity

Q. Zhou, X. Z. Zhang, T. Song, S. L. Lu, T. Dong, H. P. Tang, M. Qian

Summary: In this study, the fabrication of Ti-1Al-8V-5Fe (Ti-185) alloy using laser directed energy deposition (L-DED) was investigated. The precipitate phases along the build height were found to have a significant influence on the tensile properties of the alloy. The formation of the embrittling isothermal omega-phase (omega iso) was found to result in zero plasticity in the top region of the sample, while the middle region without the omega-phase exhibited significant tensile ductility and strength. Furthermore, it was demonstrated that converting the isothermal omega-phase to the athermal omega-phase (omega ath) restored the tensile ductility of the alloy.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Massive transformations in titanium alloys: Role of relative orientation of adjacent parent grains

S. L. Lu, D. Han, D. Y. Qin, T. Song, D. Qiu, M. Brandt, H. P. Tang, M. Qian

Summary: Massive transformations occur in titanium alloys, resulting in patch-like massive phases that traverse the parent prior-beta grain boundaries. The formation of these phases always occurs when two neighboring prior-beta grains share or nearly share a {110} pole. These phases display concentrated {0001} poles and tend to decompose into ultrafine alpha-beta lamellae.

SCRIPTA MATERIALIA (2024)

Article Multidisciplinary Sciences

Post-yield softening of bending-dominated metal metamaterials

H. Z. Zhong, C. W. Li, R. Das, J. F. Gu, M. Qian

Summary: Post-yield softening (PYS) is an important factor in guiding the design of high-performance energy-absorbing lattice materials. Contrary to previous assumptions, this study shows that PYS can occur in bending-dominated Ti-6Al-4V lattices with increasing relative density. The underlying mechanism is explained by the increase in stretching and shear deformation as relative density increases, leading to a higher tendency towards PYS. This finding expands perspectives on PYS for the design of high-performance energy-absorbing lattice materials.

PNAS NEXUS (2023)

Article Crystallography

Study of AlN growth using AMEC Prismo HiT3 MOCVD reactor

Jianzheng Hu, Long Yan, Ning Zhou, Yao Chen, Xiaoni Yang, Lianqiao Yang, Shiping Guo

Summary: The effect and mechanism of carrier gas velocity, V/III ratio, and carrier gas velocity match on the growth rate of AlN were investigated in this study. The results showed that the growth rate of AlN initially increased with hydrogen flow rate, reached saturation, and then decreased monotonically. The turning point value depended on the equipment and process. By increasing the MO VM, the growth rate of AlN could be improved, but the uniformity deteriorated due to turbulence and loss of uniform boundary layer. High quality AlN films were successfully grown on nano-patterned sapphire substrates with improved crystalline quality and atomic smooth surfaces.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Molecular dynamics simulation of homogeneous nucleation of melting in superheated sodium crystal

Tingting Ma, Yang Li, Kangning Sun, Qinglin Cheng, Sen Li

Summary: This study investigates the melting process and nucleation behavior of sodium crystals using molecular dynamics simulation. The results show good agreement between simulated and experimental values for the melting temperature, density, and radial distribution function of sodium. The diffusion coefficient of liquid sodium increases linearly with temperature, and the homogeneous nucleation rate of melting in superheated sodium crystal exponentially increases with temperature. The findings provide theoretical support for applications involving heat and mass transfer in sodium-related systems.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Fabrication of epitaxial V2O3 thin films on Al2O3 substrates via mist chemical vapor deposition

Hisato Nishii, Shintarou Iida, Akira Yamasaki, Takumi Ikenoue, Masao Miyake, Toshiya Doi, Tetsuji Hirato

Summary: Epitaxial V2O3 films were fabricated on sapphire substrates using mist chemical vapor deposition (mist CVD) method, eliminating the need for high vacuum conditions. The films can be grown on sapphire substrates even under atmospheric pressure, with the optimal growth temperature at 823 K. The films grown at 823 K exhibit a metal-insulator transition at approximately 155 K. The film on C-plane sapphire exhibits a lower transition temperature compared to those on R- and A-plane sapphire substrates.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Controlling morphology of NiSb needles in InSb through low temperature gradient horizontal gradient freeze

Jani Jesenovec, Kevin Zawilski, Peter Alison, Stephan J. Meschter, Sambit K. Saha, Andrew J. Sepelak, Peter G. Schunemann

Summary: In this study, NiSb needles were successfully formed in InSb by manipulating the growth rate and adding NiSb. These needle structures in InSb can be used to tune the magnetoresistance of devices. Additionally, undoped InSb crystals demonstrated good infrared transmission at low growth rates.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Synthesis, crystal growth, and its characterization of 2-amino-4-methylpyridinium oxalate

D. Joseph Daniel, P. Karuppasamy, H. J. Kim

Summary: The 2-amino 4-methyl pyridinium oxalate (2A4MPO) compound was synthesized and its crystal structure, functional groups, thermal stability, electrical properties, and third-order nonlinear optical properties were studied. The results demonstrate that the synthesized crystal has good structural integrity, thermal stability, and potential for third-order nonlinear optical applications.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Twenty years crystal growth of solar silicon: My serendipity journey

C. W. Lan

Summary: The past two decades have witnessed a significant transformation in solar silicon crystal growth, especially in the competition between multi-crystalline silicon (Multi-Si) and mono-crystalline silicon (Mono-Si). The demand for this crucial material has exponentially surged, with silicon solar panels capturing over 95% of the global PV market share. The advancements in crystal growth technology during this period have set historical benchmarks, with the market share shifting from high-performance multi-crystalline silicon (HPM-Si) to CZ silicon.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Design and numerical analysis of a novel argon gas tube to reduce impurities in large size casting crystalline silicon furnace

Peiyao Hao, Lili Zheng, Hui Zhang

Summary: A novel design of argon gas tube for removing impurities during silicon ingot growth was developed, and numerical simulations showed that it can effectively extract SiO.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Dependence of reaction time in hydrothermal synthesis of MoS2 quantum dots: An investigation using optical tools and fractal analysis

Geetika Sahu, Chanchal Chakraborty, Subhadeep Roy, Souri Banerjee

Summary: This article discusses the novel fractal nature of hydrothermally synthesized MoS2 QDs. By adjusting the reaction time, the study found that the average size of QDs increases and then decreases with longer reaction times. STEM images indicate that shorter reaction times lead to sheet formation, while extended reaction times cause sheets to fragment into QDs.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

High-throughput thermodynamic study of SiC high-temperature chemical vapor deposition from TMS-H2

Pengjian Lu, Wei Huang, Junjun Wang, Haitao Yang, Shiyue Guo, Bin Li, Ting Wang, Chitengfei Zhang, Rong Tu, Song Zhang

Summary: A systematic study on the tetramethylsilane-hydorgen (TMS-H-2) system for the deposition of pure single-crystal SiC by high-temperature chemical vapor deposition (HTCVD) method is conducted. The study investigates the effect of temperature, pressure, and H-2:TMS ratio on the deposition conditions and provides a theoretical basis and guidance for improving the quality and cost of industrial production of single-crystal SiC.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Molten salt synthesis of A-site disordered niobate microcrystals with tetragonal tungsten bronze structure

Xinyu Jiang, Liangliang Liu, Yanqing Liu, Yan Wang, Zhaoping Hou

Summary: Investigation on the preparation of anisometric templated textured high entropy or multi-element doped ferroelectric ceramics was conducted using A-site disordered niobate microcrystals. The effects of process parameters on the morphology and chemical composition were studied, and the photocatalytic properties of the microcrystals were evaluated.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Synthesis and crystallinity integration of copper nanoparticles by reaction medium

Mobashsara Tabassum, Md. Ashraful Alam, Sabrina Mostofa, Raton Kumar Bishwas, Debasish Sarkar, Shirin Akter Jahan

Summary: In this study, high crystallinity copper nanoparticles were synthesized by altering the reaction medium at low temperatures. The results show that changing the reaction medium can reduce the surface energy of precursors and promote the formation of highly crystalline copper nanoparticles.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Cu2ZnGeSe4 single crystals: Growth, structure and temperature dependence of band gap

Ivan Bodnar, Vitaly V. Khoroshko, Veronika A. Yashchuk, Valery F. Gremenok, Mohsin Kazi, Mayeen U. Khandaker, Tatiana I. Zubar, Daria I. Tishkevich, Alex Trukhanov, Sergei Trukhanov

Summary: This work presents the production of single crystals of Cu2ZnGeSe4, a semiconducting quaternary compound, using a gas chemical method with iodine as a transporter. The phase state, crystal structure, and lattice constants of the synthesized samples were refined and determined. The band gap of Cu2ZnGeSe4 was calculated using transmission spectrum and it was found that the band gap increases by 12% with decreasing temperature in the range of 20-300 K.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Effect of growth temperature of NH3-MBE grown GaN-on-Si layers on donor concentration and leakage currents

Timur Malin, Igor Osinnykh, Vladimir Mansurov, Dmitriy Protasov, Sergey Ponomarev, Denis Milakhin, Konstantin Zhuravlev

Summary: The effect of growth temperature on the buffer leakage currents of GaN-on-Si layers was investigated. It was found that higher growth temperature results in lower leakage currents. The defects in GaN layers grown at different temperatures were studied using photoluminescence technique, and a correlation between leakage currents, structural perfection, and donor concentration in GaN-on-Si layers was established. It was also observed that reduced growth temperature leads to the formation of inversion domains.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Numerical study of continuous Czochralski (CCz) silicon single crystal growth in a double-side heater

Thi-Hoai-Thu Nguyen, Jyh-Chen Chen

Summary: The effect of heater power control on heat, flow, and oxygen transport for CCz crystal growth was studied. Shorter upper side heater design could improve crystal quality and growth, but with higher power consumption.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Contributions to the development of crystal growth technologies

Peter Rudolph

Summary: This article presents an overview of selected contributions to the development of crystal growth technology by the Laudise Prize awardee 2023. It discusses various aspects such as shaped crystal growth, the correlation between melt structure and crystal quality, control of intrinsic defects and inclusions, prevention of dislocation cell patterns, and melt growth experiments under a travelling magnetic field.

JOURNAL OF CRYSTAL GROWTH (2024)