4.6 Article

Two radiative inverse seesaw models, dark matter, and baryogenesis

Journal

Publisher

IOP Publishing Ltd
DOI: 10.1088/1475-7516/2013/07/029

Keywords

dark matter theory; leptogenesis; baryon asymmetry; neutrino properties

Funding

  1. Commonwealth of Australia
  2. Australian Research Council
  3. Netherlands Foundation for Fundamental Research of Matter (FOM)
  4. Netherlands Organisation for Scientific Research (NWO)

Ask authors/readers for more resources

The inverse seesaw mechanism allows the neutrino masses to be generated by new physics at an experimentally accessible scale, even with O(1) Yukawa couplings. In the inverse seesaw scenario, the smallness of neutrino masses is linked to the smallness of a lepton number violating parameter. This parameter may arise radiatively. In this paper, we study the cosmological implications of two contrasting radiative inverse seesaw models, one due to Ma and the other to Law and McDonald. The former features spontaneous, the latter explicit lepton number violation. First, we examine the effect of the lepton-number violating interactions introduced in these models on the baryon asymmetry of the universe. We investigate under what conditions a pre-existing baryon asymmetry does not get washed out. While both models allow a baryon asymmetry to survive only once the temperature has dropped below the mass of their heaviest fields, the Ma model can create the baryon asymmetry through resonant leptogenesis. Then we investigate the viability of the dark matter candidates arising within these models, and explore the prospects for direct detection. We find that the Law/McDonald model allows a simple dark matter scenario similar to the Higgs portal, while in the Ma model the simplest cold dark matter scenario would tend to overclose the universe.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Astronomy & Astrophysics

Stochastic baryogenesis

Yi-Peng Wu, Kalliopi Petraki

Summary: By using a multi-field stochastic approach, this study examines the vacuum expectation value during inflation and suggests a mechanism for baryogenesis, concluding that the charged scalar mass at the order of H-* is favored by the isocurvature constraints at a Hubble scale of 10^13 GeV.

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2021)

Article Physics, Particles & Fields

Exploding operators for Majorana neutrino masses and beyond

John Gargalionis, Raymond R. Volkas

Summary: Building UV completions of lepton-number-violating effective operators is a useful way to study and classify models of Majorana neutrino mass. An algorithm described in this paper systematically generates computational representations of all tree-level completions of the operators up to mass-dimension 11, showing that some operators do not play a dominant role in neutrino-mass generation. The study also identifies at most five models containing three or fewer exotic multiplets predicting new physics below 100 TeV.

JOURNAL OF HIGH ENERGY PHYSICS (2021)

Article Physics, Particles & Fields

Bound states of WIMP dark matter in Higgs-portal models. Part I. Cross-sections and transition rates

Ruben Oncala, Kalliopi Petraki

Summary: The study investigates the role of the Higgs doublet in the thermal decoupling of multi-TeV dark matter, showing its impact on the formation of bound states and reduction of relic density.

JOURNAL OF HIGH ENERGY PHYSICS (2021)

Article Physics, Particles & Fields

Baryogenesis from ultra-slow-roll inflation

Yi-Peng Wu, Elena Pinetti, Kalliopi Petraki, Joseph Silk

Summary: In ultra-slow-roll inflation models, a sharp transition in the inflationary background can trigger coherent motion of scalar condensates carrying baryon or lepton number. This can lead to successful baryogenesis from unconventional initial conditions, shedding light on the cosmic coincidence problem.

JOURNAL OF HIGH ENERGY PHYSICS (2022)

Article Physics, Particles & Fields

Supercool composite Dark Matter beyond 100 TeV

Iason Baldes, Yann Gouttenoire, Filippo Sala, Geraldine Servant

Summary: The study suggests that dark matter may be a composite state of a confining sector with an approximate scale symmetry, with interactions mediated by a pseudo-Goldstone boson. Supercooling of the confining phase transition in the early universe allows for dark matter masses up to 10^6 TeV. The precise parameter space compatible with all experimental constraints in this scenario can be tested partly by telescopes and entirely by gravitational waves.

JOURNAL OF HIGH ENERGY PHYSICS (2022)

Article Astronomy & Astrophysics

Saha equilibrium for metastable bound states and dark matter freeze-out

Tobias Binder, Anastasiia Filimonova, Kalliopi Petraki, Graham White

Summary: The formation and decay of metastable bound states have a significant impact on the thermal-relic dark matter density. This study presents an effective Boltzmann equation that describes the interplay among bound-state formation, ionization, transitions, and decays. The results provide a more accurate estimation of the dark matter density and expand the application of the Saha ionization equilibrium theory.

PHYSICS LETTERS B (2022)

Article Astronomy & Astrophysics

Dark matter pollution in the Diffuse Supernova Neutrino Background

Nicole F. Bell, Matthew J. Dolan, Sandra Robles

Summary: The Hyper-Kamiokande experiment can precisely measure the Diffuse Supernova Neutrino Background (DSNB) and has found that low-mass dark matter may pollute the DSNB signal, affecting the determination of parameters. However, due to the lack of angular information, it is difficult to distinguish the contributions of the DSNB and dark matter.

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2022)

Review Physics, Nuclear

A next-generation liquid xenon observatory for dark matter and neutrino physics

J. Aalbers, S. S. AbdusSalam, K. Abe, V Aerne, F. Agostini, S. Ahmed Maouloud, D. S. Akerib, D. Y. Akimov, J. Akshat, A. K. Al Musalhi, F. Alder, S. K. Alsum, L. Althueser, C. S. Amarasinghe, F. D. Amaro, A. Ames, T. J. Anderson, B. Andrieu, N. Angelides, E. Angelino, J. Angevaare, V. C. Antochi, D. Anton Martin, B. Antunovic, E. Aprile, H. M. Araujo, J. E. Armstrong, F. Arneodo, M. Arthurs, P. Asadi, S. Baek, X. Bai, D. Bajpai, A. Baker, J. Balajthy, S. Balashov, M. Balzer, A. Bandyopadhyay, J. Bang, E. Barberio, J. W. Bargemann, L. Baudis, D. Bauer, D. Baur, A. Baxter, A. L. Baxter, M. Bazyk, K. Beattie, J. Behrens, N. F. Bell, L. Bellagamba, P. Beltrame, M. Benabderrahmane, E. P. Bernard, G. F. Bertone, P. Bhattacharjee, A. Bhatti, A. Biekert, T. P. Biesiadzinski, A. R. Binau, R. Biondi, Y. Biondi, H. J. Birch, F. Bishara, A. Bismark, C. Blanco, G. M. Blockinger, E. Bodnia, C. Boehm, A. Bolozdynya, P. D. Bolton, S. Bottaro, C. Bourgeois, B. Boxer, P. Bras, A. Breskin, P. A. Breur, C. A. J. Brew, J. Brod, E. Brookes, A. Brown, E. Brown, S. Bruenner, G. Bruno, R. Budnik, T. K. Bui, S. Burdin, S. Buse, J. K. Busenitz, D. Buttazzo, M. Buuck, A. Buzulutskov, R. Cabrita, C. Cai, D. Cai, C. Capelli, J. M. R. Cardoso, M. C. Carmona-Benitez, M. Cascella, R. Catena, S. Chakraborty, C. Chan, S. Chang, A. Chauvin, A. Chawla, H. Chen, V Chepel, N. Chott, D. Cichon, A. Cimental Chavez, B. Cimmino, M. Clark, R. T. Co, A. P. Colijn, J. Conrad, M. Converse, M. Costa, A. Cottle, G. Cox, O. Creaner, J. J. Cuenca Garcia, J. P. Cussonneau, J. E. Cutter, C. E. Dahl, A. David, M. P. Decowski, J. B. Dent, F. F. Deppisch, L. de Viveiros, P. Di Gangi, A. Di Giovanni, S. Di Pede, J. Dierle, S. Diglio, J. E. Y. Dobson, M. Doerenkamp, D. Douillet, G. Drexlin, E. Druszkiewicz, D. Dunsky, K. Eitel, A. Elykov, T. Emken, R. Engel, S. R. Eriksen, M. Fairbairn, A. Fan, J. J. Fan, S. J. Farrell, S. Fayer, N. M. Fearon, A. Ferella, C. Ferrari, A. Fieguth, A. Fieguth, S. Fiorucci, H. Fischer, H. Flaecher, M. Flierman, T. Florek, R. Foot, P. J. Fox, R. Franceschini, E. D. Fraser, C. S. Frenk, S. Frohlich, T. Fruth, W. Fulgione, C. Fuselli, P. Gaemers, R. Gaior, R. J. Gaitskell, M. Galloway, F. Gao, I. Garcia Garcia, J. Genovesi, C. Ghag, S. Ghosh, E. Gibson, W. Gil, D. Giovagnoli, F. Girard, R. Glade-Beucke, F. Glueck, S. Gokhale, A. de Gouvea, L. Graf, L. Grandi, J. Grigat, B. Grinstein, M. G. D. van der Grinten, R. Groessle, H. Guan, M. Guida, R. Gumbsheimer, C. B. Gwilliam, C. R. Hall, L. J. Hall, R. Hammann, K. Han, V Hannen, S. Hansmann-Menzemer, R. Harata, S. P. Hardin, E. Hardy, C. A. Hardy, K. Harigaya, R. Harnik, S. J. Haselschwardt, M. Hernandez, S. A. Hertel, A. Higuera, C. Hils, S. Hochrein, L. Hoetzsch, M. Hoferichter, N. Hood, D. Hooper, M. Horn, J. Howlett, D. Q. Huang, Y. Huang, D. Hunt, M. Iacovacci, G. Iaquaniello, R. Ide, C. M. Ignarra, G. Iloglu, Y. Itow, E. Jacquet, O. Jahangir, J. Jakob, R. S. James, A. Jansen, W. Ji, X. Ji, F. Joerg, J. Johnson, A. Joy, A. C. Kaboth, L. Kalhor, A. C. Kamaha, K. Kanezaki, K. Kar, M. Kara, N. Kato, P. Kavrigin, S. Kazama, A. W. Keaveney, J. Kellerer, D. Khaitan, A. Khazov, G. Khundzakishvili, I Khurana, B. Kilminster, M. Kleifges, P. Ko, M. Kobayashi, D. Kodroff, G. Koltmann, A. Kopec, A. Kopmann, J. Kopp, L. Korley, V. N. Kornoukhov, E. Korolkova, H. Kraus, L. M. Krauss, S. Kravitz, L. Kreczko, V. A. Kudryavtsev, F. Kuger, J. Kumar, B. Lopez Paredes, L. LaCascio, R. Laha, Q. Laine, H. Landsman, R. F. Lang, E. A. Leason, J. Lee, D. S. Leonard, K. T. Lesko, L. Levinson, C. Levy, I Li, S. C. Li, T. Li, S. Liang, C. S. Liebenthal, J. Lin, Q. Lin, S. Lindemann, M. Lindner, A. Lindote, R. Linehan, W. H. Lippincott, X. Liu, K. Liu, J. Liu, J. Loizeau, F. Lombardi, J. Long, M. Lopes, E. Lopez Asamar, W. Lorenzon, C. Lu, S. Luitz, Y. Ma, P. A. N. Machado, C. Macolino, T. Maeda, J. Mahlstedt, P. A. Majewski, A. Manalaysay, A. Mancuso, L. Manenti, A. Manfredini, R. L. Mannino, N. Marangou, J. March-Russell, F. Marignetti, T. Marrodan Undagoitia, K. Martens, R. Martin, I Martinez-Soler, J. Masbou, D. Masson, E. Masson, S. Mastroianni, M. Mastronardi, J. A. Matias-Lopes, M. E. McCarthy, N. McFadden, E. McGinness, D. N. McKinsey, J. McLaughlin, K. McMichael, P. Meinhardt, J. Menendez, Y. Meng, M. Messina, R. Midha, D. Milisavljevic, E. H. Miller, B. Milosevic, S. Milutinovic, S. A. Mitra, K. Miuchi, E. Mizrachi, K. Mizukoshi, A. Molinario, A. Monte, C. M. B. Monteiro, M. E. Monzani, J. S. Moore, K. Mora, J. A. Morad, J. D. Morales Mendoza, S. Moriyama, E. Morrison, E. Morteau, Y. Mosbacher, B. J. Mount, J. Mueller, A. St J. Murphy, M. Murra, D. Naim, S. Nakamura, E. Nash, N. Navaieelavasani, A. Naylor, C. Nedlik, H. N. Nelson, F. Neves, J. L. Newstead, K. Ni, J. A. Nikoleyczik, V Niro, U. G. Oberlack, M. Obradovic, K. Odgers, P. Oikonomou, I Olcina, K. Oliver-Mallory, A. Oranday, J. Orpwood, I Ostrovskiy, K. Ozaki, B. Paetsch, S. Pal, J. Palacio, K. J. Palladino, J. Palmer, P. Panci, M. Pandurovic, A. Parlati, N. Parveen, S. J. Patton, V Pec, Q. Pellegrini, B. Penning, G. Pereira, R. Peres, Y. Perez-Gonzalez, E. Perry, T. Pershing, R. Petrossian-Byrne, J. Pienaar, A. Piepke, G. Pieramico, M. Pierre, M. Piotter, V Pizzella, G. Plante, T. Pollmann, D. Porzio, J. Qi, Y. Qie, J. Qin, F. Quevedo, N. Raj, M. Rajado Silva, K. Ramanathan, D. Ramirez Garcia, J. Ravanis, L. Redard-Jacot, D. Redigolo, S. Reichard, J. Reichenbacher, C. A. Rhyne, A. Richards, Q. Riffard, G. R. C. Rischbieter, A. Rocchetti, S. L. Rosenfeld, R. Rosero, N. Rupp, T. Rushton, S. Saha, P. Salucci, L. Sanchez, P. Sanchez-Lucas, D. Santone, J. M. F. dos Santos, I Sarnoff, G. Sartorelli, A. B. M. R. Sazzad, M. Scheibelhut, R. W. Schnee, M. Schrank, J. Schreiner, P. Schulte, D. Schulte, H. Schulze Eissing, M. Schumann, T. Schwemberger, A. Schwenk, T. Schwetz, L. Scotto Lavina, P. R. Scovell, H. Sekiya, M. Selvi, E. Semenov, F. Semeria, P. Shagin, S. Shaw, S. Shi, E. Shockley, T. A. Shutt, R. Si-Ahmed, J. J. Silk, C. Silva, M. C. Silva, H. Simgen, F. Simkovic, G. Sinev, R. Singh, W. Skulski, J. Smirnov, R. Smith, M. Solmaz, V. N. Solovov, P. Sorensen, J. Soria, T. J. Sparmann, I Stancu, M. Steidl, A. Stevens, K. Stifter, L. E. Strigari, D. Subotic, B. Suerfu, A. M. Suliga, T. J. Sumner, P. Szabo, M. Szydagis, A. Takeda, Y. Takeuchi, P-L Tan, C. Taricco, W. C. Taylor, D. J. Temples, A. Terliuk, P. A. Terman, D. Thers, K. Thieme, T. Thuemmler, D. R. Tiedt, M. Timalsina, W. H. To, F. Toennies, Z. Tong, F. Toschi, D. R. Tovey, J. Tranter, M. Trask, G. C. Trinchero, M. Tripathi, D. R. Tronstad, R. Trotta, Y. D. Tsai, C. D. Tunnell, W. G. Turner, R. Ueno, P. Urquijo, U. Utku, A. Vaitkus, K. Valerius, E. Vassilev, S. Vecchi, V. Velan, S. Vetter, A. C. Vincent, L. Vittorio, G. Volta, B. von Krosigk, M. von Piechowski, D. Vorkapic, C. E. M. Wagner, A. M. Wang, B. Wang, Y. Wang, W. Wang, J. J. Wang, L-T Wang, M. Wang, Y. Wang, J. R. Watson, Y. Wei, C. Weinheimer, E. Weisman, M. Weiss, D. Wenz, S. M. West, T. J. Whitis, M. Williams, M. J. Wilson, D. Winkler, C. Wittweg, J. Wolf, T. Wolf, F. L. H. Wolfs, S. Woodford, D. Woodward, C. J. Wright, V. H. S. Wu, P. Wu, S. Wustling, M. Wurm, Q. Xia, X. Xiang, Y. Xing, J. Xu, Z. Xu, D. Xu, M. Yamashita, R. Yamazaki, H. Yan, L. Yang, Y. Yang, J. Ye, M. Yeh, I Young, H. B. Yu, T. T. Yu, L. Yuan, G. Zavattini, S. Zerbo, Y. Zhang, M. Zhong, N. Zhou, X. Zhou, T. Zhu, Y. Zhu, Y. Zhuang, J. P. Zopounidis, K. Zuber, J. Zupan

Summary: This article discusses how to study dark matter and neutrinos using a dual-phase xenon time-projection chamber, which has extensive sensitivity to various dark matter candidates and can cover a wide range of parameter space. These detectors can also investigate neutrinos through neutrinoless double-beta decay and various astrophysical sources. A next-generation xenon-based detector will serve as a truly multi-purpose observatory to advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology.

JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS (2023)

Correction Physics, Multidisciplinary

Nucleon Structure and Strong Interactions in Dark Matter Capture in Neutron Stars (vol 127, 111803, 2021)

Nicole F. Bell, Giorgio Busoni, Theo F. Motta, Sandra Robles, Anthony W. Thomas, Michael Virgato

PHYSICAL REVIEW LETTERS (2022)

Article Physics, Multidisciplinary

Hot and heavy dark matter from a weak scale phase transition

Iason Baldes, Yann Gouttenoire, Filippo Sala

Summary: We point out that dark matter produced non-adiabatically in a phase transition with fast bubble walls will have boosted velocity and longer free-streaming lengths. We found that this can be observed through the suppressed matter power spectrum for dark matter masses around 108-109 GeV and energy scales of the phase transition around 102-103 GeV. The phase transition is expected to occur at the border of the supercooled regime, when the Universe becomes vacuum dominated. This work offers new physics goals for various observations and connects them to gravitational waves from such phase transitions and potentially to telescope signals of heavy dark matter decay.

SCIPOST PHYSICS (2023)

Article Astronomy & Astrophysics

Lepton-flavor-violating tau decays from triality

Innes Bigaran, Xiao-Gang He, Michael A. Schmidt, German Valencia, Raymond Volkas

Summary: Motivated by flavor symmetry models, we propose theories with lepton flavor triality in the low-energy limit, which predict the presence of flavor-violating decays tau +/- -> mu +/- mu +/- e and tau +/- -> e +/- e +/- mu as the main phenomenological signatures beyond the standard model. These decays are expected to be investigated with improved sensitivity by the Belle II experiment at the SuperKEKB collider. We analyze the phenomenology of these theories, which involve doubly charged scalars mediating the above-mentioned decay processes.

PHYSICAL REVIEW D (2023)

Article Astronomy & Astrophysics

Exploring the cosmological dark matter coincidence using infrared fixed points

Alexander C. Ritter, Raymond R. Volkas

Summary: The asymmetric dark matter (ADM) paradigm is proposed to explain the coincidence in the number densities of visible and dark matter, but fails to explain the similarity in their particle masses. However, a framework introduced by Bai and Schwaller shows promise by relating the confinement scales of visible and dark QCD through infrared fixed points of the gauge couplings. By incorporating the dependence on the initial conditions for the gauge couplings in the UV, the ability of this framework to naturally explain the cosmological mass density coincidence is reassessed, resulting in a reduced number of viable models. The identified features of the viable models successfully relate the masses of the dark baryon and the proton while avoiding collider constraints on the new particle content introduced.

PHYSICAL REVIEW D (2023)

Article Astronomy & Astrophysics

Indirect detection of low mass dark matter in direct detection experiments with inelastic scattering

Nicole F. Bell, James B. Dent, Bhaskar Dutta, Jason Kumar, Jayden L. Newstead

Summary: We revisit the detection of luminous dark matter in direct detection experiments and explore ways to differentiate the signal from other potential electron recoil signals. We find that significant improvements in detector energy resolution are needed to distinguish the signal origin in larger volume/exposure xenon detectors. However, sub-eV resolution enables the discovery of LDM and determination of its mass and velocity distribution.

PHYSICAL REVIEW D (2022)

Article Astronomy & Astrophysics

Observing the Migdal effect from nuclear recoils of neutral particles with liquid xenon and argon detectors

Nicole F. Bell, James B. Dent, Rafael F. Lang, Jayden L. Newstead, Alexander C. Ritter

Summary: This study aims to make a first measurement and test the feasibility of the Migdal effect, as well as calibrate the experimental response to a potential dark matter signal. Xenon and argon are used as observation targets, and proof-of-concept calculations are carried out for low-energy neutron and potential neutrino sources.

PHYSICAL REVIEW D (2022)

Article Astronomy & Astrophysics

Implementing asymmetric dark matter and dark electroweak baryogenesis in a mirror two-Higgs-doublet model

Alexander C. Ritter, Raymond R. Volkas

Summary: This study explores the possibility of a natural mass relationship in symmetric dark matter models, and the use of dark electroweak baryogenesis as a means of generating asymmetry. By investigating the nature of the dark electroweak phase transition and the transfer of particle asymmetries through portal interactions, it is found that both aspects can be successfully implemented in various regions of the parameter space. Further analysis is conducted on the neutron portal interaction to meet observational constraints on dark radiation.

PHYSICAL REVIEW D (2021)

No Data Available