4.5 Article

Movement of trichloroethene in a discontinuous permafrost zone

Journal

JOURNAL OF CONTAMINANT HYDROLOGY
Volume 124, Issue 1-4, Pages 1-13

Publisher

ELSEVIER
DOI: 10.1016/j.jconhyd.2010.11.002

Keywords

Discontinuous permafrost; Trichloroethene; Vertical groundwater gradients; Geospatial data analysis

Ask authors/readers for more resources

At a site with discontinuous permafrost in Fairbanks, Alaska, releases of trichloroethene (TCE), an industrial solvent, have caused contamination of the groundwater. The objective of this study was to investigate the relationship between the migration pathway of the TCE groundwater plume and the distribution of the discontinuous permafrost at the site. The ICE plume configuration is substantially different than what regional hydrology trends would predict. Using GIS, we conducted a geostatistical analysis of field data collected during soil-boring installations and groundwater monitoring well sampling. With the analysis results, we constructed maps of the permafrost-table elevation (top of permafrost) and of the groundwater gradients and ICE concentrations from multiyear groundwater sampling events. The plume concentrations and groundwater gradients were overlain on the permafrost map to correlate permafrost locations with groundwater movement and the spatial distribution of ICE moving with groundwater. Correlation of the overlay maps revealed converging and diverging groundwater flow in response to the permafrost-table distribution, the absence of groundwater contamination in areas with a high permafrost-table elevation, and channeling of contaminants and water between areas of permafrost. In addition, we measured groundwater elevations in nested wells to quantify vertical gradients affecting ICE migration. At one set of nested wells down gradient from an area of permafrost we measured an upward vertical gradient indicating recharge of groundwater from the subpermafrost region of the aquifer causing dilution of the plume. The study indicates that the variable distribution of the permafrost is affecting the way groundwater and ICE move through the aquifer. Consequently, changes to the permafrost configuration due to thawing would likely affect both groundwater movement and TCE migration, and areas that were contaminant-free may become susceptible to contamination. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available