4.4 Article

Adaptive slicing of moving least squares surfaces: Toward direct manufacturing of point set surfaces

Publisher

ASME
DOI: 10.1115/1.2955481

Keywords

moving least squares surface; point-set surface; curvatures; adaptive slicing; layered manufacturing; direct manufacturing

Funding

  1. National Science Foundation [0529165]
  2. Air Force Office of Scientific Research [FA9550-07-1-0241]
  3. Fieldhouse Fellowship

Ask authors/readers for more resources

Rapid advancement of 3D sensing techniques has led to dense and accurate point cloud of an object to be readily available. The growing use of such scanned point sets in product design, analysis, and manufacturing necessitates research on direct processing of point set surfaces. In this paper, we present an approach that enables the direct layered manufacturing of point set surfaces. This new approach is based on adaptive slicing of moving least squares (MLS) surfaces. Salient features of this new approach include the following: (1) It bypasses the laborious surface reconstruction and avoids model conversion induced accuracy loss. (2) The resulting layer thickness and layer contours are adaptive to local curvatures, and thus it leads to better surface quality and more efficient fabrication. (3) The curvatures are computed from a set of closed formula based on the MLS surface. The MLS surface naturally smoothes the point cloud and allows upsampling and downsampling, and thus it is robust even for noisy or sparse point sets. Experimental results on both synthetic and scanned point sets are presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available