4.2 Article

Tumor Volumes Measured From Static and Dynamic 18F-fluoro-2-deoxy-D-glucose Positron Emission Tomography-Computed Tomography Scan: Comparison of Different Methods Using Magnetic Resonance Imaging as the Criterion Standard

Journal

JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY
Volume 38, Issue 2, Pages 209-215

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/RCT.0000000000000017

Keywords

dynamic PET-CT scan; head and neck cancer; tumor volume; gradient-based method

Funding

  1. National Natural Science Foundation of China [81301273]
  2. University of Hong Kong [201209176182]

Ask authors/readers for more resources

Objective: The objective of this study was to compare the accuracy of calculating the primary tumor volumes using a gradient-based method and fixed threshold methods on the standardized uptake value (SUV) maps and the net influx of FDG (Ki) maps from positron emission tomography-computed tomography (PET-CT) images. Materials and Methods: Newly diagnosed patients with head and neck cancer were recruited, and dynamic PET-CT scan and T2-weighted magnetic resonance imaging were performed. The maps of Ki and SUV were calculated from PET-CT images. The tumor volumes were calculated using a gradient-based method and a fixed threshold method at 40% of maximal SUV or maximal Ki. Four kinds of volumes, VOLKi-Gra (from the Ki maps using the gradient-based method), VOLKi-40% (from the Ki maps using the threshold of 40% maximal Ki), VOLSUV-Gra (from the SUV maps using the gradient-based method), and VOLSUV-40% (from the SUV maps using the threshold of 40% maximal SUV), were acquired and compared with VOLMRI (the volumes acquired on T2-weighted images) using the Pearson correlation, paired t test, and similarity analysis. Results: Eighteen patients were studied, of which 4 had poorly defined tumors (PDT). The positron emission tomography-derived volumes were as follows: VOLSUV-40%, 2.1 to 41.2 cm(3) (mean [SD], 12.3 [10.6]); VOLSUV-Gra, 2.2 to 28.1 cm(3) (mean [SD], 13.2 [8.4]); VOLKi-Gra, 2.4 to 17.0 cm(3) (mean [SD], 9.5 [4.6]); and VOLKi-40%, 2.7 to 20.3 cm(3) (mean [SD], 12.0 [6.0]). The VOLMRI ranged from 2.9 to 18.1 cm(3) (mean [SD], 9.1 [3.9]). The VOLKi-Gra significantly correlated with VOLMRI with the highest correlation coefficient (PDT included, R = 0.673, P = 0.002; PDT excluded, R = 0.841, P < 0.001) and presented no difference from VOLMRI (P = 0.672 or 0.561, respectively, PDT included and excluded). The difference between VOLKi-Gra and VOLMRI was also the smallest. Conclusions: The tumor volumes delineated on the Ki maps using the gradient-based method are more accurate than those on the SUV maps and using the fixed threshold methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available