4.7 Article

The spatial fourth-order energy-conserved S-FDTD scheme for Maxwell's equations

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 243, Issue -, Pages 344-364

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2013.02.040

Keywords

Energy-conserved; S-FDTD; Spatial fourth-order; Maxwell's equations

Funding

  1. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

In this paper we develop a new spatial fourth-order energy-conserved splitting finite-difference time-domain method for Maxwell's equations. Based on the staggered grids, the splitting technique is applied to lead to a three-stage energy-conserved splitting scheme. At each stage, using the spatial fourth-order difference operators on the strict interior nodes by a linear combination of two central differences, one with a spatial step and the other with three spatial steps, we first propose the spatial high-order near boundary differences on the near boundary nodes which ensure the scheme to preserve energy conservations and to have fourth-order accuracy in space step. The proposed scheme has the important properties: energy-conserved, unconditionally stable, non-dissipative, high-order accurate, and computationally efficient. We first prove that the scheme satisfies energy conversations and is in unconditional stability. We then prove the optimal error estimates of fourth-order in spatial step and second-order in time step for the electric and magnetic fields and obtain the convergence and error estimate of divergence-free as well. Numerical dispersion analysis and numerical experiments are presented to confirm our theoretical results. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available