4.6 Article

Pyrobaculum yellowstonensis Strain WP30 Respires on Elemental Sulfur and/or Arsenate in Circumneutral Sulfidic Geothermal Sediments of Yellowstone National Park

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 81, Issue 17, Pages 5907-5916

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01095-15

Keywords

-

Funding

  1. Pacific Northwest National Laboratory Foundational Science Focus Area [112443]
  2. U.S. Department of Energy (DOE)-Joint Genome Institute Community Sequencing Program [CSP 787081]
  3. NSF-IGERT [0654336]
  4. Genomic Science Program, Office of Biological and Environmental Research, DOE
  5. Direct For Education and Human Resources
  6. Division Of Graduate Education [0654336] Funding Source: National Science Foundation

Ask authors/readers for more resources

Thermoproteales (phylum Crenarchaeota) populations are abundant in high-temperature (>70 degrees C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80 degrees C, pH 6.1, 135 mu MAs) and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G + C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for the de novo synthesis of nearly all required cofactors and metabolites were identified. The comparative genomics of P. yellowstonensis and the assembled metagenome sequence from JCHS showed that this organism is highly related (similar to 95% average nucleotide sequence identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide an important foundation for developing an understanding of the distribution and function of these populations in YNP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available