4.4 Article

A novel approach for classification of failure modes in single lap joints using acoustic emission data

Journal

JOURNAL OF COMPOSITE MATERIALS
Volume 48, Issue 24, Pages 3003-3017

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021998313504323

Keywords

Acoustic emission; basalt laminate; single lap joints; failure modes; scanning electron microscopy

Ask authors/readers for more resources

New innovative basalt fiber/epoxy composite materials are used in engineering applications such as aerospace, automotive, and civil structures due to the potential low cost of this material together with its mechanical characteristics and its failure mechanisms. Acoustic emission is a passive nondestructive testing technique for real-time monitoring of damage developed in materials and structures, which have been used successfully for the identification of damage mechanisms in composite joints under tensile loading. The present study is focussed on acoustic emission characterization of failure modes in three prominent joining methods namely, bonded, riveted, and hybrid joints during tensile test. Parametric analysis is performed on the acoustic emission data obtained during the tensile testing of these types of joints to discriminate the failure modes. Fast Fourier transform analysis using acoustic emission waveform analysis is carried out to analyze the different failure events and associate them with their dominant frequency ranges. The predominance of failure modes in each signal is used as a key in the study to discriminate failure modes on single-lap joints in basalt/epoxy composite laminate, and the results are validated with fast Fourier Transform analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available