4.3 Article

Molecular characterization of argininosuccinate synthase and argininosuccinate lyase from the liver of the African lungfish Protopterus annectens, and their mRNA expression levels in the liver, kidney, brain and skeletal muscle during aestivation

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00360-014-0842-z

Keywords

Ammonia toxicity; Arginine; Nitric oxide; Nitrogen metabolism; Ornithine-urea cycle; Urea

Funding

  1. Singapore Ministry of Education [R154-000-429-112]

Ask authors/readers for more resources

Argininosuccinate synthase (Ass) and argininosuccinate lyase (Asl) are involved in arginine synthesis for various purposes. The complete cDNA coding sequences of ass and asl from the liver of Protopterus annectens consisted of 1,296 and 1,398 bp, respectively. Phylogenetic analyses revealed that the deduced Ass and Asl of P. annectens had close relationship with that of the cartilaginous fish Callorhinchus milii. Besides being strongly expressed in the liver, ass and asl expression were detectable in many tissues/organs. In the liver, mRNA expression levels of ass and asl increased significantly during the induction phase of aestivation, probably to increase arginine production to support increased urea synthesis. The increases in ass and asl mRNA expression levels during the prolonged maintenance phase and early arousal phase of aestivation could reflect increased demand on arginine for nitric oxide (NO) production in the liver. In the kidney, there was a significant decrease in ass mRNA expression level after 6 months of aestivation, indicating possible decreases in the synthesis and supply of arginine to other tissues/organs. In the brain, changes in ass and asl mRNA expression levels during the three phases of aestivation could be related to the supply of arginine for NO synthesis in response to conditions that resemble ischaemia and ischaemia-reperfusion during the maintenance and arousal phase of aestivation, respectively. The decrease in ass mRNA expression level, accompanied with decreases in the concentrations of arginine and NO, in the skeletal muscle of aestivating P. annectens might ameliorate the potential of disuse muscle atrophy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Biochemistry & Molecular Biology

Illumination enhances the protein abundance of sarcoplasmic reticulum Ca2+-ATPases-like transporter in the ctenidium and whitish inner mantle of the giant clam, Tridacna squamosa, to augment exogenous Ca2+ uptake and shell formation, respectively

Justin W. J. Chan, Mel Boo, Wai P. Wong, Shit F. Chew, Yuen K. Ip

Summary: The fluted giant clam, Tridacna squamosa, can perform light-enhanced shell formation with the assistance of symbiotic dinoflagellates. This process involves increased Ca2+ transport, absorption of exogenous Ca2+, and regulation of intracellular Ca2+ concentration by SERCA. The expression of SERCA-like transporter in the ctenidium and inner mantle of T. squamosa plays a crucial role in light-enhanced shell formation.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY (2021)

Article Marine & Freshwater Biology

Using form II ribulose-1,5-bisphosphate carboxylase/oxygenase to estimate the phototrophic potentials of Symbiodinium, Cladocopium and Durusdinium in various organs of the fluted giant clam, Tridacna squamosa, and to evaluate their responses to light upon isolation from the host

Jeslyn S. T. Poo, Mel V. Boo, Shit F. Chew, Yuen K. Ip

Summary: This study investigated the phototrophic potentials and relative abundances of Symbiodinium, Cladocopium, and Durusdinium in different organs of the giant clam Tridacna squamosa, finding that the symbiont population was dominated by Durusdinium in individuals from Vietnam. The proportions and phototrophic potentials of the three dinoflagellate genera varied among organs and along the outer mantle length, indicating different physiological responses. These results suggest that the association with different genera or species of dinoflagellates may provide distinct physiological advantages to the host clam under varying environmental conditions.

CORAL REEFS (2021)

Article Biochemistry & Molecular Biology

Effects of seawater acclimation on two Na+/K+-ATPase α-subunit isoforms in the gills of the marble goby, Oxyeleotris marmorata

Caryn Z. Pang, Yuen K. Ip, Shit F. Chew

Summary: The marble goby, a freshwater fish, can adapt to survive in seawater and only has one Na+/K+-ATPase alpha-subunit isoform in its gills. During exposure to seawater, the transcript level of Nka alpha 1 significantly increases on day 1 and day 6, while Nka alpha 3 only increases significantly on day 1.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY (2021)

Article Marine & Freshwater Biology

The giant clam Tridacna squamosa quickly regenerates iridocytes and restores symbiont quantity and phototrophic potential to above-control levels in the outer mantle after darkness-induced bleaching

Yuen K. Ip, Mel Boo, Miguel Mies, Shit F. Chew

Summary: The study found that after 30 days of exposure to darkness, giant clams showed significant changes in coloration and gene expression in the outer mantle. However, after returning to a normal photoperiod for just 11 days, the quantity of symbionts and coloration increased significantly, indicating that the giant clam-coccoid dinoflagellate holobiont is phototrophically plastic and particularly tolerant to bleaching.

CORAL REEFS (2022)

Article Biochemistry & Molecular Biology

Molecular characterization, immunofluorescent localization, and expression levels of two bicarbonate anion transporters in the whitish mantle of the giant clam, Tridacna squamosa, and the implications for light-enhanced shell formation

Mel Boo, Caryn Z. Pang, Shit F. Chew, Yuen K. Ip

Summary: Giant clams require increased transport of Ca2+ and HCO3- for shell formation. This study identified two proteins involved in HCO3- transport and found that their expression levels increased significantly in response to light, suggesting their role in light-enhanced uptake of HCO3-.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY (2022)

Article Environmental Sciences

Symbiotic Dinoflagellates of the Giant Clam, Tridacna squamosa, Express Ammonium Transporter 2 at the Plasma Membrane and Increase Its Expression Levels During Illumination

Caryn Z. Pang, Mel Boo, Yuen K. Ip, Shit F. Chew

Summary: Research on giant clams reveals that dinoflagellates utilize AMT2 to absorb ammonia in photosynthesis, particularly with a stronger absorption capacity in dinoflagellates residing in the outer mantle, enhancing the assimilation process of ammonia.

FRONTIERS IN MARINE SCIENCE (2022)

Article Genetics & Heredity

Molecular characterization and light-dependent expression of glycerol facilitator (GlpF) in coccoid Symbiodiniaceae dinoflagellates of the giant clam Tridacna squamosa

Germaine C. Y. Teng, Mel V. Boo, Siew H. Lam, Caryn Z. Pang, Shit F. Chew, Yuen K. Ip

Summary: This study reports on the glycerol transport protein in the symbionts of giant clams and suggests potential differences in glycerol transport capabilities among different genetic types.

GENE REPORTS (2022)

Article Biochemistry & Molecular Biology

Evidence for the involvement of branchial Vacuolar-type H+-ATPase in the acidification of the external medium by the West African lungfish, Protopterus annectens, exposed to ammonia-loading conditions

Yuen K. Ip, Charmaine W. Q. Leong, Mel Boo, Wai P. Wong, Siew H. Lam, Shit F. Chew

Summary: African lungfishes are highly ammonia-tolerant obligatory air-breathers. The study found that branchial vacuolar-type H+-ATPase (Vha) played a crucial role in regulating the acidification of the external medium in lungfishes. Furthermore, exposure to high ammonia concentrations resulted in increased expression and activity of Vha, enhancing its ability to acidify the external medium.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY (2022)

Article Biochemistry & Molecular Biology

Ammonia transporter 2 as a molecular marker to elucidate the potentials of ammonia transport in phylotypes of Symbiodinium, Cladocopium and Durusdinium in the fluted giant clam, Tridacna squamosa

Caryn Z. Pang, Yuen K. Ip, Shit F. Chew

Summary: This study used transcript levels of ammonia transporter in different genera of Symbiodiniaceae dinoflagellates to estimate their potential of ammonia transport in the fluted giant clam. The results indicated that different phylotypes of Symbiodinium and Cladocopium have different potentials of ammonia transport, and Symbiodinium phylotypes might have higher potential of NO3- transport than ammonia transport. The study also revealed disparate potentials of ammonia transport among Symbiodiniaceae phylotypes residing in different organs of T. squamosa, suggesting functional diversity among these phylotypes.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY (2022)

Article Marine & Freshwater Biology

Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3- dehydration and CO2 uptake during illumination

Raagavi Mani, Mel Boo, Siow Y. Ng, Shit F. Chew, Yuen K. Ip

Summary: Giant clams harbor symbiotic dinoflagellates that possess their own carbon concentration mechanism and are influenced by light exposure. The study indicates that light enhances the gene and protein expression levels of the symbiotic dinoflagellates in the clam's outer mantle, and different species may vary in their ability to generate CO2.

CORAL REEFS (2022)

No Data Available