4.7 Article

Direct numerical simulation of AC dielectrophoretic particle-particle interactive motions

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 417, Issue -, Pages 72-79

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2013.11.034

Keywords

Arbitrary Lagrangian-Eulerian (ALE); Dielectrophoresis; Microfluidics; Particle chaining; Particle assembly

Funding

  1. SUTD-MIT International Design Center [IDG11300101]
  2. State Scholarship Fund of China [2011684502]
  3. NSF [DMS-1319078]

Ask authors/readers for more resources

Under an AC electric field, individual particles in close proximity induce spatially non-uniform electric field around each other, accordingly resulting in mutual dielectrophoretic (DEP) forces on these particles. The resulting attractive DEP particle-particle interaction could assemble individual colloidal particles or biological cells into regular patterns, which has become a promising bottom-up fabrication technique for bio-composite materials and microscopic functional structures. In this study, we developed a transient multiphysics model under the thin electric double layer (EDL) assumption, in which the fluid flow field, AC electric field and motion of finite-size particles are simultaneously solved using an Arbitrary Lagrangian-Eulerian (ALE) numerical approach. Numerical simulations show that negative DEP particle-particle interaction always tends to attract particles and form a chain parallel to the applied electric field. Particles usually accelerate at the first stage of the attractive motion due to an increase in the DEP interactive force, however, decelerate until stationary at the second stage due to a faster increase in the repulsive hydrodynamic force. Identical particles move at the same speed during the interactive motion. In contrast, smaller particles move faster than bigger particles during the attractive motion. The developed model explains the basic mechanism of AC DEP-based particle assembly technique and provides a versatile tool to design microfluidic devices for AC DEP-based particle or cell manipulation. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Analytical

Single-Cell Stretching in Viscoelastic Fluids with Electronically Triggered Imaging for Cellular Mechanical Phenotyping

Minhui Liang, Dahou Yang, Yinning Zhou, Peixian Li, Jianwei Zhong, Ye Ai

Summary: The study introduces a high-throughput cellular mechanical phenotyping technique based on a microfluidic system, which extracts cell mechanical characteristics through rapid single-cell hydrodynamic stretching and successfully measures the deformability differences of cells.

ANALYTICAL CHEMISTRY (2021)

Article Biochemical Research Methods

A low-cost and high-throughput benchtop cell sorter for isolating white blood cells from whole blood

Xiaoguang Lu, Mahnoush Tayebi, Ye Ai

Summary: The study developed an inertial microfluidics-based cell sorter for high-throughput isolation and enrichment of WBCs, providing an efficient and effective platform for WBC separation. The sorter is designed to enable broad application for size-based inertial cell sorting and can further enrich specific cell types using different microchips with varying cutoff sizes.

ELECTROPHORESIS (2021)

Article Chemistry, Multidisciplinary

Deterministic Sorting of Submicrometer Particles and Extracellular Vesicles Using a Combined Electric and Acoustic Field

Mahnoush Tayebi, Dahou Yang, David J. Collins, Ye Ai

Summary: Active sorting via acoustic and electric fields has potential in microscale separation activities, with the combination of these techniques taking advantage of multiple force mechanisms simultaneously. The concurrent application of dielectrophoretic (DEP) and acousto-phoretic forces has been shown to decrease the critical diameter at which particles can be separated, allowing for efficient sorting of subpopulations of extracellular vesicles. Using a combined acoustic/electric approach, exosome purification with high purity and recovery rates has been demonstrated.

NANO LETTERS (2021)

Article Materials Science, Multidisciplinary

Label-Free Cell Viability Assay and Enrichment of Cryopreserved Cells Using Microfluidic Cytometry and On-Demand Sorting

Jianwei Zhong, Peixian Li, Minhui Liang, Ye Ai

Summary: The importance of cryopreservation for long-term storage of primary cell samples is highlighted, with special emphasis on the challenges of low viability and cell fragmentation. A label-free viability assessment and on-demand enrichment system for cryopreserved primary human PBMCs with over 90% viability of sorted samples in one step after thawing is demonstrated. This integrated system has broad applications in diverse cellular biology research and cell-related biomedical diagnostics.

ADVANCED MATERIALS TECHNOLOGIES (2022)

Article Chemistry, Analytical

Automatic Microfluidic Cell Wash Platform for Purifying Cells in Suspension: Puriogen

Xiaoguang Lu, Ye Ai

Summary: A centrifuge-free and automatic cell wash platform, Puriogen, has been developed for efficient cell purification and has broad applications in cell preparation.

ANALYTICAL CHEMISTRY (2022)

Article Engineering, Biomedical

A Systematic Study of Size Correlation and Young's Modulus Sensitivity for Cellular Mechanical Phenotyping by Microfluidic Approaches

Minhui Liang, Jianwei Zhong, Ye Ai

Summary: Cellular mechanical properties play a significant role in cell state and health. Microfluidic mechanical phenotyping methods are promising tools that can address the limitations of traditional approaches. This study comprehensively compares two types of microfluidic cellular mechanical phenotyping methods and provides important findings.

ADVANCED HEALTHCARE MATERIALS (2022)

Article Chemistry, Analytical

Tunable and Dynamic Optofluidic Microlens Arrays Based on Droplets

Li Liang, Xuejia Hu, Yang Shi, Shukun Zhao, Qinghao Hu, Minhui Liang, Ye Ai

Summary: This paper introduces a novel optofluidic method for fabricating tunable liquid microlens arrays (MLAs) and demonstrates their ability to achieve tunable focusing and high-quality imaging. The focal length of the MLAs can be adjusted by changing the refractive index of the liquid droplets, showing promising opportunities for various applications.

ANALYTICAL CHEMISTRY (2022)

Article Chemistry, Analytical

Accurate profiling of blood components in microliter with position-insensitive coplanar electrodes-based cytometry

Jianwei Zhong, Qiang Tang, Minhui Liang, Ye Ai

Summary: This article proposes a microfluidic high-throughput impedance cytometry using a unique coplanar electrode configuration, which eliminates height-dependent sensitivity variation and enables accurate electrical cell profiling. The proposed technology can accurately classify and quantify both leukocytes and erythrocytes, offering red blood cell indices for diagnosis.

SENSORS AND ACTUATORS B-CHEMICAL (2022)

Article Biophysics

Machine learning empowered multi-stress level electromechanical phenotyping for high-dimensional single cell analysis

Minhui Liang, Qiang Tang, Jianwei Zhong, Ye Ai

Summary: Microfluidics provides a powerful platform for biological analysis by precisely manipulating fluids and microparticles. The imaging and impedance cell analyzer (IM2Cell) introduced here combines single cell level impedance analysis and hydrodynamic mechanical phenotyping, demonstrating multi-stress level mechanical phenotyping capabilities. IM2Cell can characterize cell diameter, deformability responses, and electrical properties, providing high-dimensional information about subcellular components. It has been validated for different cell lines and shows potential for deformability studies of PBMC subpopulations.

BIOSENSORS & BIOELECTRONICS (2023)

Article Chemistry, Physical

DUPLETS: Deformability-Assisted Dual-Particle Encapsulation Via Electrically Activated Sorting

Jianwei Zhong, Minhui Liang, Ye Ai

Summary: Co-encapsulation of bead carriers and biological cells in microfluidics has become a powerful technique for various biological assays in single-cell genomics and drug screening. However, current co-encapsulation approaches limit the effective throughput due to a trade-off between cell/bead pairing rate and probability of multiple cells in individual droplets. The DUPLETS system is reported to overcome this problem by differentiating the encapsulated content in individual droplets and sorting out targeted droplets via a combined screening of mechanical and electrical characteristics.

SMALL METHODS (2023)

Article Engineering, Biomedical

Selectable encapsulated cell quantity in droplets via label-free electrical screening and impedance-activated sorting

Jianwei Zhong, Minhui Liang, Qiang Tang, Ye Ai

Summary: By introducing a label-free selectable cell quantity encapsulation in droplets sorting system, the purity and throughput of single-cell droplets can be improved. This system combines electrical impedance based screening with biocompatible acoustic sorting to achieve high efficiency and throughput while removing multi-cells and empty droplets.

MATERIALS TODAY BIO (2023)

Article Chemistry, Multidisciplinary

Rapid and Accurate Antimicrobial Susceptibility Testing Using Label-Free Electrical Impedance-Based Microfluidic Platform

Jiahong Chen, Jianwei Zhong, Yifu Chang, Yinning Zhou, Seok Hwee Koo, Thean Yen Tan, Hongtao Lei, Ye Ai

Summary: Antimicrobial resistance is a serious threat to global public health. A label-free electrical impedance-based microfluidic platform has been designed to expedite and streamline antimicrobial susceptibility testing (AST) for clinical practice, with a rapid 2-minute AST assay at the single-bacterium level. This platform enables accurate analysis of bacterial viability and determination of antimicrobial resistance.

SMALL (2023)

Article Biochemical Research Methods

Label-free multidimensional bacterial characterization with an ultrawide detectable concentration range by microfluidic impedance cytometry

Jiahong Chen, Jianwei Zhong, Hongtao Lei, Ye Ai

Summary: This study presents a novel microfluidic electrical impedance-based multidimensional single-bacterium profiling system that can detect bacteria in a wide concentration range and accurately differentiate their viability and gram types. The system utilizes multi-frequency impedance quantification to analyze the size, concentration, and membrane impedance of bacteria in a single flow-through interrogation. The system has been demonstrated to have a wide bacterial counting range and can rapidly and accurately discriminate the viability and gram types of bacteria in a label-free manner.

LAB ON A CHIP (2023)

Article Chemistry, Analytical

Automatic Microfluidic Cell Wash Platform for Purifying Cells in Suspension: Puriogen

Xiaoguang Lu, Ye Ai

Summary: A centrifuge-free and automatic cell wash platform, Puriogen, has been developed in this study, which can efficiently remove interfering substances from cell samples, improve cell wash efficiency and cell viability, and has broad applications in cell preparation.

ANALYTICAL CHEMISTRY (2022)

Article Biochemical Research Methods

Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes

Jianwei Zhong, Minhui Liang, Ye Ai

Summary: A label-free high-throughput impedance-based microfluidic flow cytometry system with a novel double differential electrode design has been proposed for submicron particle detection, achieving high signal-to-noise ratio and accuracy in sizing microparticles. Experimental results show a strong correlation between the measured particle sizes and manufacturers' datasheets, as well as consistent population ratios measurements with commercial flow cytometry results.

LAB ON A CHIP (2021)

Article Chemistry, Physical

Mechanistic exploration of Co doping in optimizing the electrochemical performance of 2H-MoS2/N-doped carbon anode for potassium-ion battery

Panpan Zhang, Xu Wang, Yangyang Yang, Haifeng Yang, Chunsheng Lu, Mingru Su, Yu Zhou, Aichun Dou, Xiaowei Li, Xiaochuan Hou, Yunjian Liu

Summary: In this study, the influence of transition metal doping on the electronic and mechanical properties and electrochemical performance of 2HMoS2/NC was investigated using Cobalt (Co) as an example. Co doping was found to effectively improve the electronic conductivity and active site areas of 2H-MoS2/NC at different positions, optimizing the adsorption and diffusion capability of potassium ions. Furthermore, the study revealed the optimal roles of different types of nitrogen atoms in kinetic adsorption, diffusion, and interfacial stability of potassium ions. These findings provide guidance for the experimental design of high rate 2H-MoS2/NC electrode materials and the optimal design of other functional composite materials.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Addressing the synchronized impact of a novel strontium titanium over copolymerized carbon nitride for proficient solar-driven hydrogen evolution

Zeeshan Ajmal, Mahmood Ul Haq, Shahid Zaman, M. K. Al-Muhanna, Anuj Kumar, Mohammed M. Fadhali, Siwar Ben Hadj Hassine, Muhammas Qasim, K. F. Alshammari, Ghulam Abbas Ashraf, Abdul Qadeer, Adil Murtaza, Sulaiman Al-Sulaimi, Huaqiang Zeng

Summary: This study presents a novel heterojunction structure (SrTiO3/CN-TAL10.0) for enhanced photocatalytic water splitting (PWS). The incorporation of thiophenedicarboxaldehyde (TAL) through copolymerization significantly improves the photocatalytic activity of carbon nitride (CN) while maintaining its photostability performance. The optimized composition allows efficient isolation of photoinduced charge carriers and enhanced charge transport, resulting in a remarkable increase in overall photocatalytic efficiency.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Magnetic-driven Interleukin-4 internalization promotes magnetic nanoparticle morphology and size-dependent macrophage polarization

Angela Arnosa-Prieto, Patricia Diaz-Rodriguez, Manuel A. Gonzalez-Gomez, Pelayo Garcia-Acevedo, Lisandra de Castro-Alves, Yolanda Pineiro, Jose Rivas

Summary: Macrophages can exhibit different phenotypes depending on the microenvironment and the characteristics of magnetic iron oxide nanoparticles (MNPs). This study demonstrates that the concentration and morphology of MNPs can influence the polarization of macrophages. The findings have implications for therapeutics targeting tissue regeneration and tumor progression.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Polyamide nanofiltration membranes by vacuum-assisted interfacial polymerization: Broad universality of Substrate, wide window of monomer concentration and high reproducibility of performance

Yu Fang, Cheng-Ye Zhu, Hao-Cheng Yang, Chao Zhang, Zhi-Kang Xu

Summary: This study demonstrates the advantages of vacuum-assisted interfacial polymerization (VAIP) in fabricating polyimide nanofiltration membranes. By using vacuum filtration, aqueous solutions of PIP can be evenly distributed on different microfiltration substrates, leading to the fabrication of uniform and ultra-thin polyamide layers with excellent performance. The membranes exhibit high rejection rates and water permeance, as well as satisfactory long-term stability.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Comparing polymer-surfactant complexes to polyelectrolytes

Isaac J. Gresham, Edwin C. Johnson, Hayden Robertson, Joshua D. Willott, Grant B. Webber, Erica J. Wanless, Andrew R. J. Nelson, Stuart W. Prescott

Summary: Understanding the interactions between polymers and surfactants is crucial for optimizing commercial systems. This study tested the behavior of polymer-surfactant systems, revealing that they do not behave like polyelectrolytes in the presence of salt. Additionally, the structure of polymer-surfactant complexes under confinement differs from that of polyelectrolytes.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Crosslinking alginate at water-in-water Pickering emulsions interface to control the interface structure and enhance the stress resistance of the encapsulated probiotics

Yunxiao Xie, Cui Liu, Jie Zhang, Yan Li, Bin Li, Shilin Liu

Summary: This study aimed to improve the microstructure and rheological properties of W/W Pickering emulsions by crosslinking sodium alginate at the water-water interface, thereby enhancing the activity of encapsulated probiotics in simulated gastrointestinal digestion.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Multi-layering of carbon conductivity enhancers for boosting rapid recharging performance of high mass loading lithium ion battery electrodes

Sang Ho Lee, Yige Sun, Patrick S. Grant

Summary: This research developed an effective approach to enhance the charging rates of lithium ion batteries (LIBs) by strategically incorporating carbon nanotube (CNT) conductivity boosters into Li4Ti5O12 (LTO) electrodes. Multi-layer architectures comprising CNT-rich and CNT-free LTO electrode layers were manufactured using a layer-by-layer spray coating method to promote charge transfer kinetics of high mass loading electrodes. The best performing multi-layer was paired with a spray-coated LiFePO4 (LFP) positive electrode, resulting in attractive power performance that outperformed conventional LTO || LFP combinations.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Defect engineering induces Mo-regulated Co9Se8/FeNiSe heterostructures with selenium vacancy for enhanced electrocatalytic overall water splitting in alkaline

Jingwei Liang, Shaobin Li, Fengbo Li, Li Zhang, Yufeng Jiang, Huiyuan Ma, Kun Cheng, Liang Qing

Summary: A molybdenum-regulated self-supporting electrode material with rich vacancy defects has been successfully synthesized and shows exceptional catalytic activities and stability for electrocatalytic overall water splitting. This study provides a new perspective for the design and synthesis of non-precious metal bifunctional electrocatalysts.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Surfactant-free microemulsions (SFMEs) as a template for porous polymer synthesis

Jonas Blahnik, Jennifer Schuster, Rainer Mueller, Eva Mueller, Werner Kunz

Summary: This study investigates the relationship between the morphology of PMMA monopolymers and PMMA-PHEMA copolymers with the expected nature of surfactant-free microemulsions (SFMEs) before polymerization. It is found that previously mesostructured, surfactant-free mixtures can produce porous polymers of different morphologies, while unstructured, oil-rich regions lead to solid, transparent polymers without nanostructured morphologies. Additionally, a surfactant-based reference system shows similar phase behavior and polymer morphologies as the comparable surfactant-free system, indicating the importance of the hydrotropic behavior of HEMA in this system.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Morphology regulation of isomeric covalent organic frameworks for high selective light scattering detection of lead

Zheng-Fen Pu, Wen-Zhi She, Rong Sheng Li, Qiu-Lin Wen, Bi-Chao Wu, Chun-Hua Li, Jian Ling, Qiue Cao

Summary: This study synthesized two framework-isomeric covalent organic frameworks (COFs) and discovered that the light scattering signal of COFs can be used for the analytical detection of lead ions. By controlling synthesis conditions and introducing regulators, the morphology of COFs could be controlled and framework-isomeric COFs could be precisely synthesized.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Preparation and dynamic color-changing study of fluorescent polymer nanoparticles for individualized and customized anti-counterfeiting application

Yuchen Weng, Ying Hong, Jingyu Deng, Sicheng Cao, Li-Juan Fan

Summary: This paper reports the preparation of dynamic color-changing fluorescent polymer nanoparticles (PNPs) by constructing a fluorescence resonance energy transfer (FRET) pair. The PNPs show excellent anti-counterfeiting effects and reproducibility. The study demonstrates a promising encryption strategy that can achieve multiple outputs with simple operation.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Employing polyaniline/viologen complementarity to enhance coloration and charge dissipation in multicolor electrochromic display with wide modulation range

Guodong Liu, Zijian Wang, Jianing Wang, Hanbin Liu, Zhijian Li

Summary: This study investigates the combination of multicolor switchable polyaniline (PANI) electrode and 1-methyl-4,4'-bipyridyl iodide (MBI), which demonstrates superior optical properties in visible and near-infrared light modulation, as well as excellent electrochemical performances. This combination can be used to develop novel electrochromic devices for applications in smart packaging, smart labels, and flexible smart windows.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Facile constructing Ti3C2Tx/TiO2@C heterostructures for excellent microwave absorption properties

Huying Yan, Yang Guo, Xingzhi Bai, Jiawei Qi, Haipeng Lu

Summary: By modifying Ti3C2Tx through heterogeneous interface engineering, optimized impedance matching is achieved, leading to enhanced electromagnetic wave absorption performance.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Reversible crowdedness of pH-responsive and host-guest active polymersomes: Mimicking μm-sized cell structures

Kehu Zhang, Yang Zhou, Silvia Moreno, Simona Schwarz, Susanne Boye, Brigitte Voit, Dietmar Appelhans

Summary: This article presents an advanced crosslinking strategy to fabricate clustered polymersomes using host-guest interactions. By controlling the input of crosslinker and environmental conditions, reversible aggregation and disassembly of these polymersomes can be achieved. The size and structure of these clustered polymersomes can be regulated and visualized through a fluorescent enzymatic cascade reaction.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)

Article Chemistry, Physical

Potassium regulating electronic state of zirconia supported palladium catalyst and hydrogen spillover for improved acetylene hydrogenation

Junjie Xu, Weixiong Huang, Ruiling Li, Li Li, Jinjin Ma, Jiaou Qi, Haiyan Ma, Min Ruan, Lilin Lu

Summary: In this study, a potassium doped palladium catalyst was developed for acetylene hydrogenation, showing excellent catalytic performance and durability. The doping of potassium effectively weakened the adsorption of ethylene, improved ethylene selectivity, and lowered the barriers of hydrogen activation and transfer reactions.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2024)