4.7 Article

Protein-resistant hyperbranched polyethyleneimine brush surfaces

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 396, Issue -, Pages 307-315

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2012.12.076

Keywords

Protein-resistant surfaces; Polyethyleneimine; Quartz crystal microbalance; Self-assembly; Ionic strength

Funding

  1. Swedish Knowledge Foundation (KKS)
  2. Swedish Research Council (VR)
  3. Crafoord Foundation
  4. Linnaeus University

Ask authors/readers for more resources

A novel hyperbranched polyethyleneimine (PEI) modified gold surface has been designed, fabricated, and investigated with respect to its ability to resist non-specific adsorption of proteins. The facile synthesis strategy, based on self-assembly, involves immobilization of polyethyleneimine to gold surfaces modified with 11-mercaptoundecanoic acid (MuDA) monolayers using traditional carbodiimide chemistry. The hyperbranched polymer brushes were characterized by X-ray photoelectron spectroscopy (XPS). Reflection absorption infrared spectroscopy (RAIRS) and ellipsometry measurements showed the thickness of the PEI brushes increases with adsorption solution ionic strength. Polymer brush surface concentrations can be improved from 2560 to 3880 chains/mu m(2) by changing the ionic strength of the adsorption solution (PBS) by varying NaCl concentration from 0 to 650 mM. Protein adsorption (pH 7.4) was evaluated under flow injection analysis (FIA) conditions using a quartz crystal microbalance (QCM). The PEI brushes suppress protein adsorption, for example, cytochrome C, bovine serum albumin (BSA), and ribonuclease A, to less than 0.08 mu g/cm(2) and the protein resistance increases with increasing ionic strength of the carrier solution, performance comparable to that achieved with comparable PEG-coated surfaces. The PEI brushes were exceptionally stable, with adsorption characteristics maintained after 6 months storage in aqueous conditions (pH 7.4, 25 degrees C, PBS). The potential of hyperbranched PEI structures as protein-resistant surfaces is discussed. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available