4.7 Article

Triggered aggregation of PbS nanocrystal dispersions; towards directing the morphology of hybrid polymer films using a removable bilinker ligand

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 358, Issue 1, Pages 151-159

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2011.02.069

Keywords

Triggered aggregation; PbS; Quantum dots; Hybrid polymer films

Funding

  1. EPSRC

Ask authors/readers for more resources

Hybrid polymer films consist of quantum dots (QDs) dispersed in a polymer matrix. A key fundamental challenge that is hindering their optimisation in optoelectronic devices such as hybrid solar cells is overcoming uncontrolled aggregation of the QDs. In an effort to direct aggregation, and trigger self-assembly, we added a bilinker ligand (1,2-ethanedithiol) to dispersed PbS QDs in polymer solutions prior to film deposition by spin casting. Turbidity studies of the PbS QD/1,2-ethanedithiol dispersions enabled a relationship to be established between the extent of 1,2-ethanedithiol-triggered QD aggregation and the nominal fractional coverage of the QDs by 1,2-ethanedithiol. The extent of aggregation (and self-assembly) increased with nominal fraction coverage. Above a value of about 1.0 QD aggregation increased substantially. TEM images showed that at low 1,2-ethanedithiol concentrations triggered assembly of network-like QD structures occurred. At high 1,2-ethanedithiol concentrations the QDs self-assembled into more-ordered micrometre-sized crystals. The results suggest that 1,2-ethanedithiol decreases the inter-QD separation in dispersion as a result of rapid ligand exchange and this process results in QD aggregation as well as self-assembly. The assembled QD structures were successfully trapped within polymer films by spin casting of PbS QD/1,2-ethanedithiol dispersions containing added polystyrene or polytriarylamine. (c) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available