4.7 Article

Dilution induced thickening in hydrotrope-rich rod-like micelles

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 359, Issue 1, Pages 163-170

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2011.03.061

Keywords

Worm-like micelle; Rheology; Hydrotrope; Sodium 3-hydroxy naphthalene 2-carboxylate

Ask authors/readers for more resources

Dilution induced changes in the microstructure and theological behavior of micelles formed by a cationic surfactant-anionic hydrotrope mixture has been investigated in the hydrotrope-rich region. The surfactant used is cetyltrimethylammonium bromide (CTAB) and the hydrotropic salt is sodium 3-hydroxy naphthalene 2-carboxylate (SHNC). The concentration of the mixture is varied from 0.5% to 10.0% w/w (phi = 0.005-0.100) at a fixed weight ratio of hydrotrope to surfactant (85:15). Rheological studies indicate Newtonian flow behavior at low and high volume fractions (0.005 and 0.100) while a shear thinning behavior is observed at intermediate volume fractions. The zero-shear viscosity eta(0) also passes through a maximum upon changes in the concentration. The most striking feature in our study is that a low viscosity Newtonian fluid transforms to a viscoelastic fluid, upon dilution, and then again to a Newtonain fluid. Small angle neutron scattering studies of 10.0% micellar solution show the presence of rod-like aggregates. Upon dilution, the scattering intensity per unit concentration shows an increase in the low q-region. The nature of pair distance distribution function and subsequent model fitting indicates a transition from rod-like micelles to unilamellar vesicles upon dilution. This behavior is explained in terms of the volume fraction dependant solubilization of hydrotropes in the rod-like micelles and consequent changes in the composition of the mixed micelles. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available