4.6 Article

Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding

Journal

NEW JOURNAL OF PHYSICS
Volume 17, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/17/2/022002

Keywords

quantum cryptography; quantum communications; quantum entanglement

Funding

  1. DARPA InPho program under Army Research Office [W911NF-10-1-0416]
  2. National Aeronautics and Space Administration

Ask authors/readers for more resources

Conventional quantumkey distribution (QKD) typically uses binary encoding based on photon polarization or time-bin degrees of freedomand achieves a key capacity of atmost one bit per photon. Under photon-starved conditions the rate of detection events ismuch lower than the photon generation rate, because of losses in long distance propagation and the relatively long recovery times of available singlephoton detectors. Multi-bit encoding in the photon arrival times can be beneficial in such photonstarved situations. Recent security proofs indicate high-dimensional encoding in the photon arrival times is robust and can be implemented to yield high secure throughput. In this work we demonstrate entanglement-basedQKDwith high-dimensional encodingwhose security against collectiveGaussian attacks is provided by a high-visibility Franson interferometer. We achieve unprecedented key capacity and throughput for an entanglement-basedQKDsystembecause of four principal factors: Franson interferometry that does not degrade with loss; error correction coding that can tolerate high error rates; optimized time-energy entanglement generation; and highly efficientWSi superconducting nanowire single-photon detectors. The secure key capacity yields asmuch as 8.7 bits per coincidence. When optimized for throughput we observe a secure key rate of 2.7 Mbit s(-1) after 20 kmfiber transmissionwith a key capacity of 6.9 bits per photon coincidence. Our results demonstrate a viable approach to high-rate QKDusing practical photonic entanglement and single-photon detection technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available