4.1 Review

Computational Modeling of Epileptic Activity: From Cortical Sources to EEG Signals

Journal

JOURNAL OF CLINICAL NEUROPHYSIOLOGY
Volume 27, Issue 6, Pages 465-470

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/WNP.0b013e3182005dcd

Keywords

Computational model; Cortical source; Forward problem; Intracerebral EEG; Scalp EEG; Epilepsy

Funding

  1. French Ministry of Research
  2. Inserm

Ask authors/readers for more resources

In epileptic patients candidate to surgery, the interpretation of EEG signals recorded either within (depth EEG) or at the surface (scalp EEG) of the head is a crucial issue to determine epileptogenic brain regions and to define subsequent surgical strategy. This task remains difficult as there is no simple relationship between the spatiotemporal features of neuronal generators (convoluted cortical dipole layers) and the electric field potentials recorded by the electrodes. Indeed, this relationship depends on the complex interaction of several factors regarding involved cortical sources: location, area, geometry, and synchronization of neuronal activity. A computational model is proposed to address this issue. It relies on a neurophysiologically relevant model of EEG signals, which combines an accurate description of both the intracerebral sources of activity and the transfer function between dipole layers and recorded field potentials. The model is used, on the one hand, to quantitatively study the influence of source-related parameters on the properties of simulated signals, and on the other hand, to jointly analyze depth EEG and scalp EEG signals. In this article, the authors review some of the results obtained from the model with respect to the literature on the interpretation of EEG signals in the context of epilepsy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available