4.7 Article

Feedbacks in Emission-Driven and Concentration-Driven Global Carbon Budgets

Journal

JOURNAL OF CLIMATE
Volume 26, Issue 10, Pages 3326-3341

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-12-00365.1

Keywords

-

Ask authors/readers for more resources

Emissions of CO2 into the atmosphere affect the carbon budgets of the land and ocean as biogeochemical processes react to increased CO2 concentrations. Biogeochemical processes also react to changes in temperature and other climate parameters. This behavior is characterized in terms of carbon-concentration and carbon-climate feedback parameters. The results of this study include 1) the extension of the direct carbon feedback formalism of Boer and Arora to include results from radiatively coupled simulations, as well as those from the biogeochemically coupled and fully coupled simulations used in earlier analyses; 2) a brief analysis of the relationship between this formalism and the integrated feedback formalism of Friedlingstein et al.; 3) the feedback analysis of simulations based on each of the representative concentration pathways (RCPs) RCP2.6, RCP4.5, and RCP8.5; 4) a comparison of the effects of specifying atmospheric CO2 concentrations or CO2 emissions; and 5) the quantification of the relative importance of the two feedback mechanisms in terms of their cumulative contribution to the change in atmospheric CO2. Feedback results are broadly in agreement with earlier studies in that carbon-concentration feedback is negative for the atmosphere and carbon-climate feedback is positive. However, the magnitude and evolution of feedback behavior depends on the formalism employed, the scenario considered, and the specification of CO2 from emissions or as atmospheric concentrations. Both feedback parameters can differ by factors of two or more, depending on the scenario and on the specification of CO2 emissions or concentrations. While feedback results are qualitatively useful and illustrative of carbon budget behavior, they apply quantitatively to particular scenarios and cases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available