4.5 Article

DIFFERENTIAL CALCIUM ALTERATIONS IN ANIMAL MODELS OF NEURODEGENERATIVE DISEASE: REVERSAL BY FK506

Journal

NEUROSCIENCE
Volume 310, Issue -, Pages 549-560

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2015.08.068

Keywords

bio-assay; classifier; FK506; neurodegeneration; statistical pattern recognition; two-photon

Categories

Funding

  1. NIH [AG18440, NS044233, AG010435, S10RR029050]

Ask authors/readers for more resources

Abnormal accumulation of amyloid beta (A beta), alpha-synuclein (alpha-syn), and microtubule-associated protein tau (tau) have been implicated in neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Pick's disease (PiD). The mechanisms through which aggregated versions of alpha-syn, A beta, and tau may lead to neurodegeneration are not entirely clear, however, there is emerging evidence that neuronal calcium dysregulation is at play. Two-photon microscopy is a powerful tool that can be used to measure in vivo alterations of calcium transients using animal models of neurodegeneration, and when coupled with statistical methods to characterize functional signals, can reveal features that identify and discern between distinct mouse types. We studied four mouse models of neurodegenerative diseases, wild-type (WT) alpha-syn, E57K alpha-syn, amyloid precursor protein (APP), and triple-repeat (3R)-Tau and Non-transgenic (tg) littermates using two-photon microscopy. We found that for calcium transients, simple measures such as area under the curve (AUC) and peak width in the 1-Hz whisker pad stimulation paradigm, were significantly increased for WT alpha-syn, E57K alpha-syn and APP mice across all cortical depths compared to Non-tg mice. A similar result was found in the 3-Hz paradigm in E57K alpha-syn mice. Spontaneous calcium transient AUC was significantly higher in WT alpha-syn mice and lower for APP and 3R Tau mice at 150-lm depth. Going beyond simple measure differences such as group means for AUC, signal peak width, and spontaneous calcium activity counts, we built statistical classifiers to characterize neuronal calcium signals to identify and discern, with quantified measures of confidence, all mouse types. We tested our classifier with FK506, which regulates mitochondrial calcium and found that this drug modulated the WT alpha-syn mice and lower for APP and 3R Tau mice at 150-lm syn calcium transients to such an extent that the classifier easily identified the calcium transients as belonging to Non-tg mice. The coupling of two-photon microscopy data and statistical classifiers serves to effectively create a bioassay where the number of animals and scientific resources can be reduced without compromising the results of the experiment. (C) 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Neurosciences

Human Placenta Derived Mesenchymal Stem Cells Transplantation Reducing Cellular Apoptosis in Hypoxic-Ischemic Neonatal Rats by Down-Regulating Semaphorin 3A/Neuropilin-1

Yang He, Jun Tang, Meng Zhang, Junjie Ying, Dezhi Mu

Summary: This study investigated the protective effects and mechanisms of human placenta derived mesenchymal stem cells (hPMSCs) transplantation in a rat model of hypoxic-ischemic encephalopathy (HIE). The results showed that hPMSCs transplantation reduced apoptosis and improved long-term neurological prognosis. Furthermore, the downregulation of Sema 3A/NRP-1 expression and activation of the PI3K/Akt/mTOR signaling pathway played a key role in the protective effects of hPMSCs.

NEUROSCIENCE (2024)

Article Neurosciences

Probing the Neurophysiology of Temporal Sensitivity in the Somatosensory System Using the Mismatch Negativity (MMN) Sensory Memory Paradigm

Emily L. Isenstein, Edward G. Freedman, Jiayi Xu, Ian A. DeAndrea-Lazarus, John J. Foxe

Summary: This study evaluated electrophysiological discrimination of parametric somatosensory stimuli in healthy young adults to understand how the brain processes the duration of tactile information. The results showed that participants did not electrophysiologically discriminate between 100 and 115 ms, but they exhibited distinct electrophysiological responses when the deviant stimuli were 130, 145, and 160 ms. These findings contribute to a better understanding of tactile sensitivity in different clinical conditions.

NEUROSCIENCE (2024)

Article Neurosciences

Enhancement of the Evoked Excitatory Transmission in the Nucleus Tractus Solitarius Neurons after Sustained Hypoxia in Mice Depends on A2A Receptors

Juliana R. Souza, Ludmila Lima-Silveira, Daniela Accorsi-Mendonca, Benedito H. Machado

Summary: This study demonstrates that A2A receptors play a crucial role in modulating synaptic transmission in the NTS neurons and are required for the enhancement of glutamatergic transmission observed under short-term sustained hypoxia conditions.

NEUROSCIENCE (2024)

Article Neurosciences

Correlation Between Cued Fear Memory Retrieval and Oscillatory Network Inhibition in the Amygdala Is Disrupted by Acute REM Sleep Deprivation

Miki Hashizume, Rina Ito, Rie Suge, Yasushi Hojo, Gen Murakami, Takayuki Murakoshi

Summary: The basolateral amygdaloid complex (BLA) is closely involved in the formation of emotional memories, including both aversive memory and contextual fear memory. Acute sleep deprivation (SD) disrupts the acquisition of tone-associated fear memory in juvenile rats, but has no significant effect on contextual fear memory. Slow network oscillation in the amygdala contributes to the formation of amygdala-dependent fear memory in relation to sleep.

NEUROSCIENCE (2024)

Article Neurosciences

Enhanced Gasdermin-E-mediated Pyroptosis in Alzheimer's Disease

Qunxian Wang, Shipeng Guo, Dongjie Hu, Xiangjun Dong, Zijun Meng, Yanshuang Jiang, Zijuan Feng, Weihui Zhou, Weihong Song

Summary: GSDME plays a crucial role in the pathogenesis of Alzheimer's disease by regulating the switch from apoptosis to pyroptosis and participating in neuroinflammatory response. Knockdown of GSDME has been shown to improve cognitive impairments, indicating that GSDME could be a therapeutic target for Alzheimer's disease.

NEUROSCIENCE (2024)