4.7 Article

On the Contribution of Linear Correlations to Quasi-harmonic Conformational Entropy in Proteins

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 8, Issue 10, Pages 3820-3829

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ct300082q

Keywords

-

Funding

  1. Austrian Science Fund FWF (START) [Y 514-B11]
  2. European Research Council (ERG Starting Independent grant)
  3. Austrian Science Fund (FWF) [Y 514] Funding Source: researchfish

Ask authors/readers for more resources

We study the contribution of linear, pairwise atom-positional correlations (covariances) to absolute and relative conformational entropy as calculated by quasi-harmonic analysis of molecular dynamics (MD) trajectories (S-QH and Delta S-QH). By analyzing a total of 25 mu s of MD simulations of ubiquitin and six of its binding partners in bound and unbound states, and 2.4 mu s of simulations of eight different proteins in phosphorylated and unphosphorylated states, we show that Delta S-QH represents a remarkably constant fraction of a quasi-harmonic entropy change obtained if one ignores the contribution of covariance terms and uses mass-weighted atom-positional variances only (Delta S-VAR). In other words, the relative contribution of linear correlations to conformational entropy change for different proteins and in different biomolecular processes appears to be largely constant. Based on this, we establish an empirical relationship between relative quasi-harmonic conformational entropy and changes in crystallographic B-factors induced by different processes, and we use it to estimate conformational-entropic contribution to the free energy of binding for a large set of protein complexes based on their X-ray structures. Our results suggest a simple way for relating other types of dynamical observables with conformational entropy in the absence of information on correlated motions, such as in the case of NMR order parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available