4.6 Article

Changes in cerebral blood flow during steady-state cycling exercise: a study using oxygen-15-labeled water with PET

Journal

JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM
Volume 34, Issue 3, Pages 389-396

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/jcbfm.2013.220

Keywords

-

Funding

  1. Japan Society for the Promotion of Science [24500478]
  2. Grants-in-Aid for Scientific Research [26670637, 23390344, 24500478] Funding Source: KAKEN

Ask authors/readers for more resources

Cerebral blood flow (CBF) during dynamic exercise has never been examined quantitatively using positron emission tomography (PET). This study investigated changes in CBF that occur over the course of a moderate, steady-state cycling exercise. Global and regional CBF (gCBF and rCBF, respectively) were measured using oxygen-15-labeled water (H2150) and PET in 10 healthy human subjects at rest (Rest), at the onset of exercise (Ex1) and at a later phase in the exercise (Ex2). At Ex1, gCBF was significantly (P<0.01) higher (27.9%) than at Rest, and rCBF was significantly higher than at Rest in the sensorimotor cortex for the bilateral legs (M1Leg and S1Leg), supplementary motor area (SMA), cerebellar vermis, cerebellar hemispheres, and left insular cortex, with relative increases ranging from 37.6% to 70.5%. At Ex2, gCBF did not differ from Rest, and rCBF was significantly higher (25.9% to 39.7%) than at Rest in only the M1 Leg, 51 Legs and vermis. The areas showing increased rCBF at Ex1 were consistent with the central command network and the anatomic pathway for interoceptive stimuli. Our results suggest that CBF increases at Ex1 in parallel with cardiovascular responses then recovers to the resting level as the steady-state exercise continues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available