4.7 Article

High Insulin-Induced Down-Regulation of Erk-1/IGF-1R/FGFR-1 Signaling Is Required for Oxidative Stress-Mediated Apoptosis of Adipose-Derived Stem Cells

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 229, Issue 12, Pages 2077-2087

Publisher

WILEY
DOI: 10.1002/jcp.24667

Keywords

-

Funding

  1. Transplantation Agency of Lazio [020507030/2012]

Ask authors/readers for more resources

Homeostasis of adipose tissue requires highly coordinated response between circulating factors and cell population. Human adult adipose-derived stem cells (ASCs) display multiple differentiation properties and are sensitive to insulin stimulation. Insulin resistance and high level of circulating insulin characterize patients with type 2 diabetes and obesity. At physiological concentration, insulin promoted proliferation and survival of ASCs in vitro, whereas high insulin level induced their dose-dependent proliferative arrest and apoptosis. Insulin-induced apoptotic commitment depended on the down-regulation of Erk-1, insulin growth factor-1 receptor (IGF-1R), and fibroblast growth factor receptor-1 (FGFR-1)-mediated signaling. Specific inhibition of Erk-1/2, IGF-1R, and FGFR activity promoted ASC apoptosis but did not increase insulin effects, whereas EGFR and ErbB2 inhibition potentiated insulin-induced apoptosis. FGFRs and EGFR inhibition reduced ASC adipogenic differentiation, whereas Erk-1/2 and IGF-1R inhibition was ineffective. Insulin-induced apoptosis associated to reactive oxygen species (ROS) accumulation and inhibition of NADPH oxidase 4 (Nox4) activity prevented ASC apoptosis. Moreover, specific inhibition of Erk-1/2, IGF-1R, and FGFR-1 activity promoted ROS generation and this effect was not cumulative with that of insulin alone. Our data indicate that insulin concentration is a critical regulatory switch between proliferation and survival of ASCs. High insulin level-induced apoptotic machinery involves Nox4-generated oxidative stress and the down-regulation of a complex receptor signaling, partially distinct from that influencing adipogenic differentiation of ASCs. J. Cell. Physiol. 229: 2077-2087, 2014. (c) 2014 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available