4.7 Article

Beneficial effects of fenofibrate in retinal pigment epithelium by the modulation of stress and survival signaling under diabetic conditions

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 227, Issue 6, Pages 2352-2362

Publisher

WILEY
DOI: 10.1002/jcp.22970

Keywords

-

Funding

  1. Ministerio de Ciencia e Innovacion (Spain)
  2. Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (Instituto Carlos III, Spain) [SAF2009-08114, SAF2009-07408, NEURORET-DIAB]
  3. Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, MICINN, (Spain) [SAF2009-08114, SAF2009-07408, NEURORET-DIAB]
  4. CIBERDEM

Ask authors/readers for more resources

In this study, we found an imbalance between stress-mediated and survival signaling and elevated apoptotic markers in retinal pigment epithelium (RPE) from diabetic patients. Since fenofibric acid (FA) treatment reduces the progression of diabetic retinopathy (DR), we investigated the effect of hyperglycemia and hypoxia, two components of the diabetic milieu, on stress, apoptosis, and survival pathways in ARPE-19 cells (immortalized human RPE cell line) and whether FA is able to prevent the deleterious effects induced by these conditions. ARPE-19 cells cultured in high-glucose (HG) medium or under hypoxia (1% oxygen)-induced phosphorylation of the stress-activated kinases JNK and p38 MAPK. This effect was increased by the combination of both conditions. Likewise, hyperglycemia and hypoxia triggered the phosphorylation of the endoplasmic reticulum (ER) stress markers PERK and eIF2a and the induction of the pro-apoptotic transcription factor CHOP. Under these experimental conditions, reactive oxygen species (ROS) were elevated and the integrity of tight junctions was disrupted. Conversely, ARPE-19 cells treated with FA were protected against these deleterious effects induced by hyperglycemia and hypoxia. FA increased insulin-like growth factor I receptor (IGF-IR)-mediated survival signaling in cells cultured under hyperglycemia and hypoxia, thereby suppressing caspase-3 activation and down-regulation of BclxL. Moreover, FA increased LC3-II, an autophagy marker. In conclusion, our results demonstrated that FA elicits a dual protective effect in RPE by down-regulation of stress-mediated signaling and induction of autophagy and survival pathways. These molecular mechanisms could be involved in the beneficial effects of fenofibrate reported in clinical trials. J. Cell. Physiol. 227: 23522362, 2012. (c) 2011 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available