4.5 Article

Expression profiles in surgically-induced carotid stenosis: a combined transcriptomic and proteomic investigation

Journal

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
Volume 12, Issue 5B, Pages 1956-1973

Publisher

WILEY
DOI: 10.1111/j.1582-4934.2008.00212.x

Keywords

remodelling; cardiovascular surgery; gene array analysis; proteomics

Funding

  1. Progetto Finalizzato Sanita 2003
  2. PRIN-MIUR

Ask authors/readers for more resources

Vascular injury aimed at stenosis removal induces local reactions often leading to restenosis. The aim of this study was a concerted transcriptomic-proteomics analysis of molecular variations in a model of rat carotid arteriotomy, to dissect the molecular pathways triggered by vascular surgical injury and to identify new potential anti-restenosis targets. RNA and proteins extracted from inbred Wistar Kyoro (WKY) rat carotids harvested 4 hrs, 48 hrs and 7 days after arteriotomy were analysed by Affymetrix rat microarrays and by bidi-mensional electrophoresis followed by liquid chromatography and tandem mass spectrometry, using as reference the RNA and the proteins extracted from uninjured rat carotids. Results were classified according to their biological function, and the most significant Kyoro Encyclopedia of Genes and Genomes (KEGG) pathways were identified. A total of 1163 mRNAs were differentially regulated in arteriotomy-injured carotids 4 hrs, 48 hrs and 7 days after injury (P < 0.0001, fold-change >= 2), while 48 spots exhibited significant changes after carotid arteriotomy (P < 0.05, fold-change >= 2). Among them, 16 spots were successfully identified and resulted to correspond to a set of 19 proteins. mRNAs were mainly involved in signal transduction, oxidative stress/inflammation and remodelling, including many new potential targets for limitation of surgically induced (re)stenosis (e.g. Arginase I, Kruppel like factors). Proteome analysis confirmed and extended the microrarray data, revealing time-dependent post-translational modifications of Hsp27, haptoglobin and contrapsin-like protease inhibitor 6, and the differential expression of proteins mainly involved in contractility. Transcriptomic and proteomic methods revealed functional categories with different preferences, related to the experimental sensitivity and to mechanisms of regulation. The comparative analysis revealed correlation between transcriptional and translational expression for 47% of identified proteins. Exceptions from this correlation confirm the complementarities of these approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available