4.4 Article

Isogenic enteric neural progenitor cells can replace missing neurons and glia in mice with Hirschsprung disease

Journal

NEUROGASTROENTEROLOGY AND MOTILITY
Volume 28, Issue 4, Pages 498-512

Publisher

WILEY
DOI: 10.1111/nmo.12744

Keywords

cell therapy; endothelin receptor B; enteric nervous system; Hirschsprung disease; Lentivirus

Funding

  1. Massachusetts General Hospital
  2. REACHirschsprung Foundation
  3. Ethicon Scholarship Grant Award from Society of University Surgeons
  4. National Institutes of Health [R01 DK103785]

Ask authors/readers for more resources

Background Transplanting autologous patient-derived enteric neuronal stem/progenitor cells (ENSCs) is an innovative approach to replacing missing enteric neurons in patients with Hirschsprung disease (HSCR). Using autologous cells eliminates immunologic and ethical concerns raised by other cell sources. However, whether postnatal aganglionic bowel is permissive for transplanted ENSCs and whether ENSCs from HSCR patients can be successfully isolated, cultured, and transplanted in vivo remains unknown. Methods ENSCs isolated from the ganglionic intestine of Ednrb(-/-) mice (HSCR-ENSCs) were characterized immunohistochemically and evaluated for their capacity to proliferate and differentiate in vitro. Fluorescently labeled ENSCs were co-cultured ex vivo with aganglionic Ednrb(-/-) colon. For in vivo transplantation, HSCR-ENSCs were labeled with lentivirus expressing green fluorescent protein (GFP) and implanted into aganglionic embryonic chick gut in ovo and postnatal aganglionic Ednrb(-/-) rectum in vivo. Key Results HSCR-ENSCs maintain normal capacity self-renewal and neuronal differentiation. Moreover, the Ednrb(-/-) aganglionic environment is permissive to engraftment by wild-type ENSCs ex vivo and supports migratrion and neuroglial differentiation of these cells following transplantation in vivo. Lentiviral GFP-labeled HSCR-ENSCs populated embryonic chick hindgut and postnatal colon of Ednrb(-/-) HSCR, with cells populating the intermuscular layer and forming enteric neurons and glia. Conclusions & Inferences ENSCs can be isolated and cultured from mice with HSCR, and transplanted into the aganglionic bowel of HSCR littermates to generate enteric neuronal networks. These results in an isogenic model establish the potential of using autologous-derived stem cells to treat HSCR and other intestinal neuropathies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available