4.5 Article

Pten Inhibitor-bpV Ameliorates Early Postnatal Propofol Exposure-Induced Memory Deficit and Impairment of Hippocampal LTP

Journal

NEUROCHEMICAL RESEARCH
Volume 40, Issue 8, Pages 1593-1599

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-015-1633-y

Keywords

Propofol; Memory; Long-term potentiation; Pten

Ask authors/readers for more resources

Early postnatal propofol administration has potential detrimental effects on hippocampal synaptic development and memory. Therapeutic method is still lack due to unknown mechanisms. In this study, a 7-day propofol protocol was applied to model anesthesia in neonatal mice. Phosphatase and tensin homolog deleted on chromosome ten (Pten) inhibitor bisperoxovanadium (bpV) was pre-applied before propofol to study its potential protection. After propofol application, Pten level increased while phospho-AKT (p-AKT) (Ser473) decreased in dorsal hippocampus. Interestingly, i.p. injection of Pten inhibitor reversed the decrease of p-AKT. Two months after administration, basal synaptic transmission, hippocampal long-term potentiation (LTP) and long-term memory were reduced in propofol-administrated mice. By contrast, i.p. injection of Pten inhibitor at a dose of 0.2 mg/kg/day before propofol reversed the detrimental effects due to propofol application. Consistently, bpV injection also reversed propofol application-induced decrease of synaptic plasticity-related proteins, including p-CamKII alpha, p-PKA and postsynaptic density protein 95. Taken together, our results demonstrate that bpV injection could reverse early propofol exposure-induced decrease of memory and hippocampal LTP. bpV might be a potential therapeutic for memory impairment after early propofol postnatal application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available