4.1 Article

Rapid Decrease of CD16 (FcγRIII) Expression on Heat-Shocked Neutrophils and Their Recognition by Macrophages

Journal

Publisher

HINDAWI LTD
DOI: 10.1155/2011/284759

Keywords

-

Funding

  1. Ministry of Science and Higher Education (Warsaw, Poland) [N N303 291934, N N301 031534, DS6]
  2. European Union [POIG.02.01.00-12-064/08]

Ask authors/readers for more resources

Accumulation of neutrophils in the site of inflammation is a typical mechanism of innate immunity. The accumulated neutrophils are exposed to stressogenic factors usually associated with inflammation. Here, we studied response of human peripheral blood neutrophils subjected to short, febrile-range heat stress. We show that 90 min heat stress slowed down the spontaneous apoptosis of neutrophils. In the absence of typical markers of apoptosis the heat-shocked neutrophils induced antiinflammatory effect in human monocyte-derived macrophages (hMDMs), yet without being engulfed. Importantly, the expression of Fc gamma RIII (CD16) was sharply reduced. Surprisingly, concentration of the soluble CD16 did not change in heat-shocked neutrophil supernates indicating that the reduction of the cell surface CD16 was achieved mainly by inhibition of fresh CD16 delivery. Inhibitors of 90 kDa heat shock protein (HSP90), a molecular chaperone found in membrane platforms together with CD16 and CD11b, significantly increased the observed effects caused by heat shock. The presented data suggest a novel systemic aspect of increased temperature which relies on immediate modification by heat of a neutrophil molecular pattern. This effect precedes cell death and may be beneficial in the initial phase of inflammation providing a nonphlogistic signal to macrophages before it comes from apoptotic cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available